Chapter 5

Orthogonal Curvilinear Coordinates

Last update: 22 Nov 2010

Syllabus section:
4. Orthogonal curvilinear coordinates; length of line element; grad, div and curl in curvilinear coordinates;
spherical and cylindrical polar coordinates as examples.

So far we have only used Cartesiaty, z coordinates. Sometimes, because of the geometry of a given
problem, it is easier to work in some other coordinate systelere we show how to do this, restricting the
generality only by an orthogonality condition.

5.1 Plane Polar Coordinates

In Calculus Il and Chapter 2, we met the simple curvilineasrdinates in two dimensions, plane polars,
defined by
X=1rco0s0, y=rsinf.

We can easily invert these relations to get

r=xX2+y2, 0 = arctarty/x).

The Chain Rule enables us to relate partial derivatives mepect toc andy to those with respect toand6
and vice versa, e.g.
of ofox dfay _xof yof
0r_dx0r+0yar _rax+ray'
In Calculus Il, the rule for changing coordinates in intdgra also given. The general rule is that if we
change coordinates fromy to u,v wherex = x(u, v), y = y(u, v), then a ady in an area integral is replaced
by the Jacobian determinant

(5.1)

9% ox
ou dv dudv .
9y 9y
du ov

If we definer = (x(u,v),y(u,v),0), differentiate w.r.t.u,v and take the cross-product, we will see that the
above is equal to

ﬂ X ﬁ dudv ,
Ju

as= |5 x5
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as we derived in section 4.2.

For plane polar coordinates, replacings with r,8 and calcuating the determinant above giv&s=d
r drd@; this can also be shown geometrically by considering aniteimal quadrilateral with corners at
(r,0),...,(r+dr,8+d6) and working out the area from a sketch.

Example 5.1. The Gaussian integral (related to the Gaussian distributictatistics)

Consider the integral
0 00 2
/ / e (V) dxdy = ( [e.e* dx) .

Transforming to polar coordinates gives

o0 2 2n 1 2000 12
/ re"dr [ do=[-ze " |5[0l5 ="
0 0
and hence (according to Dr. Saha “the most beautiful of &digrals”)

/ e dx = VL

—00

For later use, we now construct the unit vectors in the dimastin whichr and 8 increase at a point,
which we will denoteg; andeg. These are tangent to the coordinate lines, wherecadinate line means a
curve on which only one of the coordinates is varying, andatfier coordinates are fixed. Coordinate lines
are generalizations of lines parallel to the, zaxes in Cartesians, but now they won'’t be straight lines¢hen
the “curvilinear” in the chapter title).

We already know how to find the tangent vectors to coordinats| by taking partial derivatives of
with respect to each af ; then all we have to do is divide those by their lengths to gétwectors. Thus in
plane polars we have

r =rcosfi+rsinfj

so a small changdr gives us a change

or S or or S
dl’r:Eer(COSQI—I—SInej)dI’, ‘W‘_l = er_ﬁ_cosewsmej
while a small changd® gives us
or oo . or o .
dre:%dez(—rsmewrcosej)de, |%|:r = eg=—sinfi+coshj.

So a general small displacement becomes
Or=g0dr+regdb

We will see the value of this later on; we are next going to amrsthree-dimensional versions of polar
coordinates: there are two common versions, firstly cylcalmpolars and then spherical polars.
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5.2 Cylindrical Polar Coordinates

For cylindrical polars, we turn the plane polars in thg plane into three-dimensional coordinates by simply
usingz as the third coordinate (see Fig. 5.1). To avoid confusidh wiher coordinate systems, we shall for
clarity 1 rename asp and@ asg@, but beware that in other courses, books, and applicatibthese ideas,
and@ will still be used. Thus we have

X=pcosp, y=psing, z=z,
or
r = pcosyi+ psingj +zk |

and quantities in any plare=constant will be as in plane polars. The figure 5.1 shows doatd lines for
each ofp, ¢ andz here the coordinate line fg is a line of varyingp and constan{,z, and likewise for
the other two. Note that the coordinate lines figiz are straight lines, while the line is a circle around the
zaxis. Thomas’s Fig. 15.37 shows a nice diagram of surfaceshoch one of the coordinates is constant:
the constanp surface is a cylinder whose axis is theaxis, while surfaces of constagtor constant are
planes.
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Figure 5.1: Cylindrical polar coordinates relative to @aran, and with sample- and¢-curves shown.

The fact that constant gives a cylinder gives the name cylindrical polars: theserdimates are natural
ones to use whenever there is a problem involving cylindlgemmetry or symmetry (for example, doing a
surface integration over a cylinder, or in physics caldo@f magnetic field around a straight wire).

To get partial derivatives in curvilinear coordinates weaiaguse the chain rule (5.1), but now with three
terms on the right. Taking the plane polar results, changargble names and appendieg= k, the unit
vectors along the coordinate lines are

€ = COSQi +singj , e,= —sin@i+cospj, e =Kk

respectively. We can write this in matrix form as

€ cosp sing O i
€ | =| —sing cosp O i . (5.2)
& 0 0 1 k

lUnfortunately, for the same reasons of clarity, Thomas &xithe alternative solution of renaming two of the sphenmahr coor-
dinates. To avoid confusion with past years’ exam paperseé kapt to the choice used there, which is also the one usedshmoks.
Thomas choose, ¢, 0) for the usualr, 8, ¢). The swap o andg is particularly likely to be confusing.
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It is easy to see from the above that the dot-product of anyetsvgives 1 (if they are the same) or O (for
any two different ones), like the rules falj,k. This implies that the thre€'s are anorthogonal triple of
unit vectors, and also implies geometrically that the cimssiuct of any two differerg’s will be =+ the third
one.

We can also express this property in matrix notation: tle83natrix above, call iR, is a rotation matrix,
i.e. one such thaR~! = RT, where theRT denotes transpose. This comes about because the dot-produc
of any twoe's is given by one element of the matiR", and thee's are an orthogonal triple if and only
if RRT =1, the identity matrix.2 Also note that if we want,j,k in terms of thee's, we can just multiply
Eq.5.2byR 1 =RT.

The lengths oBr /dp, dr /d¢@ anddr /dz are respectively 1p and 1; we can use these together with the
€'s to find infinitesimal area elements: e.g. taking a surfaceconstant (a cylinder), we can treat this as a
2-parameter surface witp, z as the parameters, so the vector area element for small ebdpgiz is given
by
or or
as = ED X ﬁ_Z d(de
= pepx & dpdz
= p e depdz;

this will be useful when doing surface integrals over a ajdin (As usual, there is a potentially ambiguous
choice of sign with vector areas, due to the sign-flip in cliaggrder of a cross product; take care with this,
e.g. when doing a problem check that your vector area matbleedesired direction).

When doing volume integrals, we may need the volume elembithis

dVv = p dpdedz
from the scalar triple product.

5.3 Spherical Polar Coordinates

These are coordinatés 6, @), wherer measures distance from the origifh,measures angle from some
chosen axis, called thgolar axis, and@ measures angle around that axis (see Fig 5.2.) To relate tinem
Cartesian coordinates we usually assume thatthes is the polar axis. Then, let P be our chosen point
at (r, 8, 9), and drop a perpendicular from P to theaxis meeting it at Q. The line OP is at and@ldo the
positive z-axis, so clearlpQ = z=rcosf and PQ =rsin6. Dropping another perpendicular from P to the
Xy plane, we get a point in they plane at distancesin@ from the origin; then inserting = r sin@ into the
cylindrical polars in Sec. 5.2 gives us:

X=rsin@cosp, y=rsingsing, z=rcoso.
or, as a position vector
r =rsin@cos@i+rsin@singj +rcosf k

Here thep is the same as that of cylindrical polars, which explains wieychose the same letter. The inverse
of these relations is

2 2
r=vX+y+2, 6= arctan(@) ;9= arctar‘(:—:) '

2Rotation matrices are “special” because they preserveHerand angles; e.g. if we take two vectars, write them as column
vectors, then their scalar product in matrix notatiorai®. The two vectors rotated by matrik areRa andRb. To conserve scalar
product, we must havgRa)" (Rb) = a" b, and using the transpose rule this becoaeR"Rb = a" b. For this to apply formny two a,b
we must hav&RTR = [, the identity matrix.
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Coordinate lines of, (i.e. lines of constan® and ¢), are straight radial lines from the origin; coordinate
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Figure 5.2: Spherical polar coordinates relative to Céatesand with sample-, 6— and¢-curves shown.

lines of 6 (constant and @) aremeridional semicircles, i.e. semicircles centred at the origin and jiteae
containing the polar axis; and coordinate linesgofconstantr and 8) are latitudinal circles, i.e. circles
centred at a point on the polar axis and in a plane perperatitait. Note however that while runs from
0 to = (like ther of plane polars ang of cylindrical polars) andp runs from 0 to 2t (like the 8 of plane
polars),6 only runsfrom 0 to 11, since for any point P the angle between OP and the z-axistwesnéed
180 degrees # radians.

The coordinate lines o are strictly semi-circles, rather than circles. To makerealeiwe have to take
the coordinate lines d for two differentg, say@ and@ + 7. Thomas’s Fig. 15.42 shows a nice diagram
of surfaces on which one of the coordinates is constant.

You should beware of the fact that some authors, includingnds, use different notation, in particular
swapping the meanings éfandg in the definition of spherical polars. We shall consistentdg the above
notation for spherical polar coordinates, which is the noashmon one, throughout this course.

Note that these again generalize the plane polar coordinbte this time the polans 6 are in planes
containing thez (or polar) axis, rather than in planes perpendicular to ite pherical polar coordinates are
of course the natural ones to use when we have a sphericalegsoor part of a sphere.

Now we construct the vectors as before: taking partial derivatives above with respect to each of the
coordinates in turn, we get

dr/dr = sinBcosyi+ sin@singj + cosok,
dr/068 = rcosfcosgi+rcosfsingj —rsinfk
dr/de = —rsin@sin@i+rsinfcosyj.

The lengths of these, by simple applications offaps sin’ ¢ = 1, are respectively ¥, andr sin@. Dividing
these derivatives by their lengths gives us the unit vee{gey ande, tangent to the coordinate lines, which
we can write as

e sin@cosp sinfsing cosf i
eg | = cosBcosp cosBsing —sind j . (5.3)
€p —sing cosp 0 k

It is straightforward to show that again the dot-product oy &wo €'s is 1 (if they are the same) or O (if
different); therefore the cross-product of any tee is + the third one and the matrix above is again a
rotation matrix.
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Itis also worth noting thag, =r /r, as expected by symmetry singds a unit vector pointing away from
the origin at point.

For doing integrals later on, the volume element is givenhgydcalar triple product
dV = (dr/adr) x (dr /36).(dr /d¢) dr d8 dg = r?sinH dr dO dg
The infinitesimal area element on a sphere (i.e. a surfaceradtant r) is given by
dS= (dr/d6) x (dr /@) dOdp =r?sind e dodg

Similar results hold for surfaces of constaptand of constan®, but are not so common in practice; note
that the above area element on a sphere turns up in many eesuanpdl exam questions, and is well worth
memorising.

Example 5.2. “Earth polar coordinates”

To define spherical polars on the Earth, let the polar axithbeHarth’s rotation axis, with increasing
to the North, let the equator define tkgy plane, and let the prime meridian (the one through Greenwich
be @ = 0. Then any point on the Earth’s surface can be referred théyspherical polar anglé®, @). In
navigation people use latitude and logitude. Longitude éasured East or West from the prime meridian
and is in the rang€0, 180°) so to getp for a place with Westerly longitude we just subtract from-=2 360°.
Latitude is defined to be 0 at the equator (whe@as90° = 11/2 there). Given a latitude, we need to subtract
it from 90 if it is North and add it to 90if it is South.

For example Buenos Aires, which has latitude 38S, and longitude 522'W, will have Earth polar
coordinated) = 125, ¢ = 302 to the nearest degree.

5.4 Some applications of these polar coordinates

Using polar (or cylindrical) coordinates the area withinizle of radiusR, fORfOZ"r dedr, comes out imme-
diately asmR?.

Using spherical polar coordinates the volume of a spheradifisR is

R p,m p2m
/ / / r2sin6 dd6 dr
JO JO JO

which evaluates t@nR? (Remember that for a full sphere, the ranges of integratie< 8 < 11, 0 < ¢ <
21).

Example 5.3. Area of a cone:
Consider the conical surfadke= 6, cut in a sphere of radius The area is given by integrating
2n s
/ d(p/ Sindyr dr = 2 sinG;.
0 0

Heres s the slant height of the cone. The cone’s base Bayill be ssin8;. Hence we can express the
sloping area of a cone neatly ash.

Example 5.4. We now reconsider Example 4.5.
Find the flux of the fieldF = zk across the portion of the sphexé+ y? + 7% = a2 in the first octant with
normal taken in the direction away from the origin.
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Because of the geometry of the surface, it is easiest to wodpherical polar coordinatés 6, @), so the
sphere has = a. The unit normah to the sphere that points away from the origin is jgstthe outward
radial vector of unit length. Now

F.e = Zk -6 = zc0sO = r co< 6 .

using 5.3 to evaluatk.e; = cosf. An area element on the surface of a sphere of radisis
(rd@)(r sinfde) =r?sin8d6 de. For our given sphere= a, so

n/2 rm/2
/F-ndS = / / acos 6a’sin6dodyp
JS JO 0

n/2 rm/2
= a3/ / cos 0sin6dodyp
o Jo

. /2
_ T Leoge
2 3 0
T3
= =a°.
6
Note that the integrand didn’t depend @nso we just replaced thidp integral with a multiplication by the

range, herér/2—0). This is a common short-cut to note.

Example 5.5.Cutting an apple

In his book, Matthews poses a good problem for illustratimiggration using curved coordinates: “A
cylindrical apple corer of radiua cuts through a spherical apple of radlusHow much of the apple does it
remove?”

We can reformulate the problem slightly, without losing geality, by letting the radius of the apple equal
unity and introducing sifi; = a/b (i.e. we scale the problem Hy). In our restated problem the corer cuts
through the peelat 8 = 6; andf = %n— 6, in spherical polars, i.e. in cylindrical polars at

p =sinB;, z=cosb;,

and, of course, &= — cosb;.

We can now complete the solution of this problem in (at lefmt)y different ways: three of these are
relegated to an appendix, not given in lectutes.

The first way is to integrate overand therp

singy \/1-p2 singy 1
4n/ pdp dz:4n/ p(1—p?2dp = 4?n(l—cos”(pl).
Jo Jo Jo

5.5 General Orthogonal Curvilinear Coordinates

The two sets of polar coordinates above have a feature in @ymitine three sets of coordinate lines are
orthogonal to one another at all points, because their tangetors and corresponding unit vecteisare
orthogonal. (This is where trmrthogonal in the chapter title comes from).

3| give only the key steps. Some algebraic filling-in is neededeach version we can shorten the calculations by repattia ¢
integration with multiplication by 2 (since the integrand doesn’t depend@n, and also doing the integrals only fae> 0, and then
doubling using symmetry.
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General orthogonal coordinates are coordinates for whielse properties are true, i.e. the coordinate
lines are always mutually perpendiculara given point, though they are generally curved. In general,
coordinates need not be orthogonal. However, we shall beectorad only with orthogonal curvilinear co-
ordinates. Cylindrical polars and spherical polars aredhly non-Cartesian coordinate systems in which
you will be expected to perform explicit calculations inglziourse, apart from simple substitutions into the
general formulae.

Suppose€us, Uz, Uz) are a general set of coordinates, defined by some given fumtiiy, up, uz). As
before, we calculaté@r /du; which is the tangent vector towg line (varyingus, constanusy,uz). Next we
define the arc-length; and unit vectoe; as

or or
hi=|=— =—/h
1= 150 e (7u1/ 1
therefore
ﬂ:h
ou; 1€1

Itis easy to calculate that
W2 _ ox 2+ ay 2+ 9z \?
“\dug Jup dup)
Likewise differentiating by u,,us, we define two more unit vectoes, e, along the coordinate lines of
u» andus, and associated arc-length paramekerandhs. This is useful for several reasons: firstty,tells

us in which directiorr moves with a small change im, while hy du; is the distance moved alorgg, and
likewise for changedus, dus.

We define a coordinate system todmthogonal iff e;, & ande; are mutually orthogonal everywhere:

Coordinategus, Uy, uz) are orthogonat ;—url;—ljz = (;i—:z(;i—; = ;—Js(;i—tjl =0

For orthogonal coordinates, a general small chaldge, duy, dus) in the coordinates means a displacement
dr = hiduie + hoduse, + hzduses (5.4)

which corresponds to a distance
(h2dlu2 + h2du2 + h3du2) "2
Also, for orthogonal coordinates the dot and cross prodofcgy twoe's will obey the same rules we met

before: therefore the matrR relating(ey, e, €3) to (i, j, k) will be a rotation matrix (from above) and have
the property thaRT = R~1.

Cartesian coordinates are of course a special simple cas¢haigonal curvilinear coordinates, in which
all the coordinate lines are straight lines and alhpt=h, = hz = 1.

Sometimes it is convenient to replace the 1,2,3 with thedetf the coordinates, e.g. in cylindrical polar
coordinates, we wrote,, €y, €;. There we already founld, = 1 andh; = 1, buthy, = p, so a changeaq
corresponds to moving a distangdg along a circle around the-axis.

In spherical polar coordinatel; = 1 again, anchg = r. A change @ in @ corresponds to moving a
distancer sinfdg (because sinf is the radius of the particular latitudinal circle aroune th-axis), so
hy = rsind.

One reason that orthogonal coordinates are so useful isthay orthogonal coordinate syst€m, u, uz),
small displacements along andu, define small rectangles, while small displacements alangs,, us de-
fine small cuboids. In other wordl; hy du; du, is an area element normal ég on a surface of constang,
andhy hy hz du; dup dug is a volume element.
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5.6 Vector fields and vector algebra in curvilinear coordindes

Scalar fields can of course be expressed in (orthogonal)licwar coordinates: they are simply written as
functionsf (uz, up, us) or for brevity f (u;).

As you will know from Linear Algebra, vectors can be exprasssing any basis of the vector space
concerned. The same is true, at each point, of vector fielgstoow we have always chosef, k as our
basis vectors: however, when using curvilinear coordmate will normally use the orthogonal unit vectors
along the coordinate lines as our basis vectors, and write

F=Fie; + Foep + Faes.

For clarity, we can use the coordinate names instead of &2s8bscripts for the three components. Thus we
may write

F = Fx| + FyJ + sz

to express the same vector in Cartesian, cylindrical paidrspherical polar coordinates (of couege=i and

so on in Cartesians). Note that tekemevectorF will have different components depending on our choice
of basis vectors: suppose we are giverfamith definedry, F,, F, above, but we want to fing,,Fg, Fy, then
we need to use the matrix as in Eq. 5.3 to exprgs& in terms of thee's, multiply out and collect into one
term in eacle. (This effectively turns into a matrix multiplication).

In any orthogonal coordinate system, the scalar (dot) antbvécross) products work just as in Cartesian
coordinates:

W.V = W1V1 + WoVo + W3V3 (5.5)
and
& & 6
WXV=| W Wz W3 , (5.6)
Vi V2 V3

but note this only works if the vectors are defiretdhe same point, such as a dot produé&t-dr or F-dS
in a line or surface integral. Weannot use these for two position vectors at widely separate pdietsause
thee's vary with position.

Vector differentiation is more complicated, because thié wectors are no longer constant: when we
differentiated a vector in Cartesians
F=Fi+Fj+Fk
we just differentiated the componerits, F,, F3) because the unit vectors are constant; but in general coor-

dinates thee's depend on position, so we have to use the product rule dfedetitiate thee vectors as well
as the components.

Differentiation of these vectors with respect to a variatteer than position (like the derivatives in Sec-
tion 3.1) is straightforward. For example if positiordepends on time, and is given in cylindrical polars so
I = pep + 78, we just use the product rule to get the time derivative

P =pep+pep+2e,+28; .

(where the over-dots are shorthand for time derivativesa®mmon). Then sinog = cosgi + singj from
(5.2), _ _
€ = @(—singi 4 cosyj) = @e, .
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Similarly & = 0. Substituting into the previous result, we get
r=pep +p¢e¢+'zez
for a velocity in cylindrical polar coordinates.

When differentiating scalar or vector fields with respeqidsition, the key operations are always grad of a
scalar, and div and curl of a vector field (this is becauseghes the only combinations that behave “sensibly”
after rotations). In the next sections, we will show how ttrakate the grad, div and curl operators in general
orthogonal coordinates; then we apply those general faeta the most common cases of cylindrical polars
and spherical polars.

5.7 The Gradient Operator in curvilinear coordinates

To calculate the gradient of a scalar fi&ldu;, uy, uz) in orthogonal curvilinear coordinatés;, uy, uz), we
go back to the definition
v =0OV.dr . (%)

for the changelV caused by an infinitesimal position chardye

(Note: heredV is the infinitesimal change in scalar fieldresulting from a small changdr; it is not a
volume element. )

We definelV = (OV)1e1 + (OV)2e2 + (OV)3€3, and we want to find the three componefiiy/ ), etc.

From the definitions of the unit vectors previously, we have-de;hidu; + e;hdu; + eshzdus, so the
right-hand side of{) becomes

((AV)1e1+ (OV)2e2+ (OV)ze3) - (exhydu + exhzdus + eshsdus)
= (OV)1h1dug + (OV)2hedu; + (OV) 3hzdus

using the orthogonality of the's.

Now turning to the left-hand side of of), using Taylor's theorem (in 3 dimensions), and discarding
terms of second and higher derivatives, we get
ov ov ov

V= —-— — —
d duldul+ 0u2du2+ du3du3

These two expressions above must be equalfigrarbitrary changesid, du, and diz. Hence we must have

ov ov ov
V)ihi=—; (V)2h,=—; (OV)3hg=—
(OV)1hy U (OV)2hy FT (OV)shs FT
Dividing by theh’s and substituting back into the original definition, inlaygonal curvilinear coordinates
we have
10V 10V 10V

v = ——— e — . 5.7
hldulel+h2 0U2e2+h3 0U3e3 ( )

Clearly in Cartesian coordinates, we have= x, e; =i etc and all thredy’s are 1, so this simplifies to
the well-known formula from Chapter 1.

For a geometrical explanation, théh terms take care of the arc-length effects, i.e. howr faroves for
a small change in each coordinate. So the 1-compondnVakepresents the changd per smalldistance

73



dsin the directione;; but, moving a distancés in directione; requires a chang@u; = ds/h; in coordinate
uy; therefore the 1h; terms appear in grad V above.

Example 5.6. What isOIV in spherical polar coordinates ? Evalual¢ whereV = r sinf cosg.

In spherical polarsjus, up,us) = (r, 8, @) andh; = 1, hy, =r, hg = rsin@. Putting those into 5.7 we have

g 1 Lo,
“ o T30 rsinf de *

For the giverV, dV /dr = sinB cosy, dV /968 = r cosf cosp anddV /d@ = —r sinBsing. Hence, using
the result above,
[V = sinB cosge; + cosf cospey — Singey.

(In this case we can observe that= x and[V =i, using the matrix from Eq. 5.3, so this example is a lot
easier in Cartesians; however, many problems involvincutér or spherical symmetry do get easier in polar
coordinates).

Exercise 5.1 What isCIV in cylindrical polar coordinate§, ¢,z) ? O

Exercise 5.2. Let (r, 0, @) be spherical polar coordinates. Evaluate where

@f=¢; (b)f=06; (c)f=(r"sinmo).

5.8 The Divergence Operator in curvilinear coordinates

Next we want to computgl - F in orthogonal curvilinear coordinates. Although we couicedtly calculate

the divergence in any coordinates, using the Cartesianitiefinthe matrix relating basis unit vectors, and the
chain rule, the results can be found with less effort fromDineergence Theorem. The Divergence Theorem
is true in all coordinates (since it equates scalars, whakeevmust be independent of the coordinates). Thus

/D-FdV:/ F.ds,
\Y 5

where. is the closed surface enclosing volume

Now, we apply this to an infinitesimal “cuboid” with one corrag (uz, up, uz) and edges corresponding to
change®u;, duy, duz in each coordinate; so this has eight corner@atuy, uz), (us + dug, Uy, U3), ... (Ug +
Ouy, Uz + duy, Uz + dug). From before, the volume of the cuboidd® = (h;du;)(hpduy)(hzdus). For a
sufficiently small volume, we can approximaie F as constant acrog®/, so the left-hand side becomes

(D . F)6V = (|:| . F)(h1h2h35U15U25U3) .
Next we consider the right-hand side of the Divergence Témorwe need to take the surface integral
over the six faces of our cuboid, and add results. First clamgihe integral of.n over the face of the

cuboid where the first coordinate has valyet du;. This face is a rectangle with unit normak; and area
(h20up)(h3dus), so the surface integral is approximately

(h2hgduz0usFy)y, 15y,
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where the subscript shows it is evaluatedigt- du;. On the opposite face a we have unit normal-e;
(pointing outwards i.e. away from the first face), so the acefintegral gives us
—(h2h35U25U3F1)u1 .

Repeating the above for the other four faces we get symrnaktasults; finally summing the six terms and
then taking the limit a®V — 0, we obtain

1
O.-F = li — hydushzdusF — (hoduohzduzF
5u175J2rT]5u3—>06V (h20uzhgdusFy )y, 4 5u, — (h20Uzh3dUsF1 )y,
+(hgdughydus )y, 1 su, — (NadUshi duLF2)y,

(P BULNRBULFs )y s, — <h16u1h25u2F3>u3} |

Though each pair of brackets looks the same, this is not zause thé's andF’s are different on opposite
faces of the cuboid; the first two terms give &g, times the partial derivativé /du; of the bracket, and so
on for the next pairs, so this gets us the result

_ 1 [alhehsFy) | d(hshio) | d(huhoFs)
hihohs oup oup dus '

0-F (5.8)

Note: In this last step, we have taken sod@s outside the brackets and cancelled them with the ones
in 8V, but we must leave thi's inside the differentiation since thi’s generally vary with position. This
comes about because our “cuboid” may be slightly “taperisg"the areas of opposite faces are not exactly
equal; and differentiating thig’s takes care of that.

Example 5.7.What isO- F in cylindrical polar coordinates, whefe= Fye, + Fyep + Fz€; ?

In cylindrical polarsus,up,u3z) = (p, ®,z) andh; = 1,h, = p, h3 = 1. Hence

_1[0(pFp)  IFy  J(pF)
TF=51"00 Tae T oz

Note that we can apply the product rule, and sidpgdz=0,dp/dp = 1 we get

1_ 0F, 10F, 0F,
0 F= Rt 5+ 50 o

Note: Itis important to note that aR, term has appeared here, which is not a derivativeé.of his has
appeared because the coordinate linegpftiave a “built in divergence”, they all radiate outwards frime
z-axis, so a field with constaf}, has a positive divergence term due to this.

As a further example we can note that in cylindrical polars, pe, 4 0e, + z&,. Plugging in components
(p,0,2) to the above, we get
Or=1+1+0+1=3

which agrees with the result in Cartesians, as it must.

(If we had just take@p/dp + dz/dzwe would have gofl - r = 2; clearly wrong) .

Example 5.8. What isJ - F in spherical polar coordinates, whefe= Fr e 4 Fgeg + Fypey?

In spherical polarsjus, up,u3) = (r, 0, @) andh; = 1, h, =r, hg = rsin6. Hence

1 d(r?2sinBF) d(rsinBF d(rF,
(resi r)+(' 9)+(rp)

H-F=2sne ar 96 a9
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5.9 The Curl Operator in curvilinear coordinates

Finally we want curl: as before we have curvilinear coord#sdu,, Uy, uz), and a vector field = Fie; +
F.e; + Fse3 ; we want to calculate

OxF=(0xF)ie1+(0xF)e+ (0 xF)zes,

so we want the 1,2,3 components of the above.

In analogy with the previous section, we use Stokes’s thredoeprovide a coordinate-independent defi-

nition of O x F:
/ (Ox F)-dS:/ Fdr,
where. is a surface spanning the closed cu#e

To calculate the 1-componefifl x F)q, consider a planar curve around a small “rectangle” on asarf
of constant;, with sides given by small changés, anddus. From previous results, the vector area of this
rectangledS = h,d0uyhzduz er; now taking(d x F) - dS, the 2 and 3 components of x F disappear so the
LHS of Stokes’s theorem is approximately

(D X F)1h25U2h35U3

Now looking at the RHS of Stokes’s theorem, the line integralind the edge of the same rectangle is given
by adding the line integrals along the four sides: this israpinately

(h20Uz2F2)u; + (h30U3F3) yy 4+ 5u, — (M20U2F2) s+ 5u; — (N30UsF3)y,

where the subscripts denote that the term is evaluatedtatahge, and two minus signs appear because oppo-
site sides are traversed in opposite directions arounditised rectangle. Equating the last two expressions,
and taking the limit a®u,, duz — 0, we have

o i . (h3F3)U2+5U2 - (h3F3)U2 _ (hZFZ)U3+5U3 - (hZFZ)Us
(D x F)l a h2h3 6u2!15nu]3—>0 l: 5U2 5U3
_ 1 (a(hst) 5(h2F2)) .

hohs \ du,  dug

This is just the 1-component &f x F. To get the 2- and 3- components, we just repeat all the above
for two more small rectangles in surfaces of constants respectively; this looks the same but cycling the

1/2/3’s, and we get
(0% F) 1 (ﬁ(thl) 0(h3F3)> ,

- h3h1 0U3 0u1
1 (0(hR) d(hiFy)
(D x F)3 o h1h2 ( ﬁul B dUZ '

These results can be written in a compact (and more memoifabfe as a determinant:

hiey hex  hges
d/dul d/auz 0/0U3
hiFr R hsRs

OxF= . (5.9

hihohs

Once again, in Cartesian coordinates this simplifies to thi-known expression from Chapter 3.4.

Example 5.9. What isO x F in spherical polar coordinates?
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In spherical polar coordinatés 8, ¢) we haveh; = 1, h, =r, hs =rsinf. Hence, using the determinant
form:

1 & reg  rsinfeg
F rFg  rsinfF,
or in expanded form
1 d(rsin@Fy) d(rFp) 1 [0FR 0(rsinBFy) 1[9(rFg) OJFK
OxF=—= - - —  ———|ep+ - — =~ €p.
r2sin@ 20 170 rsin@ | do or r or 00

Note that since is independent of andg, etc., we can for instance take theutside the differentiations in
thee, component and cancel it with arin the denominator. Remember the answer is a curl so it's tovec
field. Do not add all the components together, forgettingvietorse, etc (this is a common error).

Note: the full expression above looks quite daunting. However anynproblems this may simplify
considerably using symmetry: for example, if a given prable symmetrical around theaxis, then we will
haveF, = 0 anddF; /0@ = 0 anddFg/d @ = 0, so four of the six derivatives will vanish.

Exercise 5.3.Show by expanding it that the determinant definition is egjeint to the full expressions
for the individual components given above. O

Exercise 5.4. What isO x F in cylindrical polar coordinates?

Note that ifp andz have dimensions of length amgis dimensionless (because it's an angle), then all the
terms in the expression fat x F should have the same dimensions, namely the dimensidhslivided by
length. This is a simple check that you should make. O

Exercise 5.5. Use spherical polar coordinates to evaluate the divergandesurl ofr /r3. [Hint: don't
forget that in spherical polar coordinates, the positiocioer is equal tore;.] O

Exercise 5.6. State Stokes’s theorem, and verify it for the hemisphesaalacer = 1, z> 0, with the
vector fieldA(r) = (y, —X, 2). O

Exercise 5.7. The vector fieldB(p) = (0,p~1,0) in cylindrical polar coordinate$p, ¢,z). Evaluate
0 x B. Evaluate the line integrgl, B.dr, where? is the unit circlez=0,p =1, 0< ¢ < 211. Does Stokes’s
theorem apply? O

Note: To conclude this chapter, we will note that many applied mathPhysics problems involve an
expression like12V, whereV is a scalar field andl? is the Laplacian operator, in cylindrical or spherical
polar coordinates. We can get the expression&lfat in polar coordinates using firstly the definition Eq. 3.10
(recall this wag1?V = div(gradV)) , and then using Eq. 5.7 for grat] then taking div of that with Eq. 5.8.

The results are available in most textbooks; you will not kgeeted to memorise those, but you might

be given them in an exam question and asked to calculate Bmgges$o it's worth taking a look especially if
you are taking applied maths courses later.
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Appendix

Other ways of doing Example 5.5 are as follows
The second method is to divide the volume removed into twtspé) a cylinder with radius sif; and

height co®;, and (ii) a ‘top-slice’. Volume (i), the cylinder, is easyr&ir? 6, cosb;. To get volume (ii) we
integrate ovep and there

1 V1-72 1
4n/ dz/ pdp:2n/ (1-2)dz= 2T (24 co6, — 3coshy).
cosfy JO cosf; 3

The sum of volumes (i) and (ii) i%’—‘(l —cos 6;) as expected.

A third way also divides the volume removed into two part9: af ‘ice-cream cone’ or cone with a
spherical top, and (ii) a cylinder minus cone. The volumes(i)

6 1 4
471/ 1siné)d@/ rzdr:?n(l—cosel).
0 0

Volume (ii), a cylinder with cone removed, is a bit harder:

cosf; sin6y cosfy . 41T .
471/ dz/ pdp = 271/ (sir? 6, — Ztarf 6;)dz = ?sm2 6, cosb;
0 z 0

tan6;

(which notice is% of the volume of the cylinder). Again the sum of the volumeegmnated iéf(l —cos6y).

Finally, a fourth possibility is to integrate for the volurmemaining after coring, which is

cosb. \V1-2 cosb.
471/ 1dz/ pdp:2n/ 1(1—22—sin291)dz:%nco§91.
0 S| 0

in91
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SUMMARY OF ORTHOGONAL CURVILINEAR COORDINATES

In orthogonal curvilinear coordinatdsi, U, Uz), with corresponding unit vectors;, e, e3 and arc-
length parameteis;, hy, hs, the gradient of a scalar fieM is given by

10V 10V 10V
&+ ——-—=63 ;

IV=""—e+——o
hl 0U1e1+ h2 0uz h3 0U3

the divergence of a vector fielel= Fie; + Fe, + Fzes is given by

1 7} 7} 7}
= A 5 ——(hsh ;
O-F hahohs {aul(hzhaﬁ)—i— 0uz(h3th2)+ au3( 1hoF3)

and the curl of the same vector field is given by

hier e hses
d/dul d/dUQ ﬁ/dU3
hiFi  hoR  haRs

OxF = hahahs

Cartesian coordinates:
(u, Up, U3) = (X, Y, ) ; arc-length parametetg =1, h, =1,h3=1.

Cylindrical polar coordinates:
(u1, Up, U3z) = (p, @, 2) ; arc-length parametets = 1,h, =p,h3=1.

Spherical polar coordinates:
(u, Up, u3) = (r, O, @) ; arc-length parametets = 1,h, =r,hz =rsin6 .
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