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Chapter 1

Introductory material

Last revised: 29 Sep 2010

This chapter gives a quick review of the key parts of the prerequisite courses (Calculus I and II, and
Geometry I) which we will actually use in Calculus III, adding some extra material. Those parts which are
revision will be without examples.

1.1 Trigonometric functions

1.1.1 Values

(See Thomas 1.6)
We can quickly obtain the value of a trigonometric function for any argument in terms of values forx∈ [0, 1

2π ]
by remembering a few things. First we have the table

0◦ 30◦ = π
6 radians 45◦ = π

4 rad. 60◦ = π
3 rad. 90◦ = π

2 rad.

cos 1
√

3
2

1√
2

1
2 0

sin 0 1
2

1√
2

√
3

2 1

To get the sign for other values we can use the mnemonic table

Radians Degrees sin cos tan Positive functions
(0, 1

2π) (0◦, 90◦) + + + All
(1

2π , π) (90◦, 180◦) + − − Sin
(π , 3

2π) (180◦, 270◦) − − + Tan
(3

2π , 2π) (270◦, 360◦) − + − Cos

sometimes called the ‘Add Sugar To Coffee’ rule – or use Thomas’ variant “All Students Take Calculus”.
(Note: to be entirely accurate we should have special rows inthis table for the values12π etc because at those
points one or more of the functions will be zero or unbounded.)
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Then we remember what happens when we replacex by−x, x + π/2 orx + π :

cos(−x) = cosx, sin(−x) = −sinx,

cos(x +
π
2

) = −sinx, sin(x +
π
2

) = cosx, (1.1)

cos(x + π) = −cosx, sin(x + π) = −sinx.

These are very easy to derive fromeix = cosx+ isinx, remembering thateiπ/2 = i, eiπ = −1. Using them
in combination we can get

cos(π − x) = −cosx, sin(π − x) = sinx.

and so on.

More generally

cos(x +(m+
1
2
)π) = (−1)(m+1) sinx, sin(x +(m+

1
2
)π) = (−1)m cosx, (1.2)

cos(x + nπ) = (−1)n cosx, sin(x + nπ) = (−1)n sinx. (1.3)

wherem andn are integers. These identities enable us to relate the valuewe want to a value in the first
quadrant (i.e. the range[0, 1

2π ]). Remember the special cases forx = 0,

cos(nπ) = (−1)n, sin((n +
1
2
)π) = (−1)n. (1.4)

cos((n +1/2)π) = 0, sin(nπ) = 0. (1.5)

which will turn up regularly later on.

1.1.2 Identities for the trigonometric functions

The most important formulae to remember are

sin2 A +cos2 A = 1 (1.6)

cos(A + B) = cosAcosB−sinAsinB (1.7)

sin(A + B) = sinAcosB +cosAsinB. (1.8)

If you have trouble remembering which of the last two is which, and which has the minus in it, try substituting
some special values such asA = 0 or B = 1

2π and checking the result. For example, takingA = 0 in the last
equation gives sinB = 0+sinB, consistent, whereas if you had tried sin(A+B) = sinAcosB−cosAsinB you
would get sinB = 0−sinB, clearly wrong. From these and the earlier results Eq. 1.1 weget

cos(A−B) = cosAcosB +sinAsinB

sin(A−B) = sinAcosB−cosAsinB.

and by adding or subtracting various pairs of the above equations, we get

cosAcosB = 1
2(cos(A + B)+cos(A−B)) (1.9)

sinAsinB = 1
2(cos(A−B)−cos(A + B)) (1.10)

sinAcosB = 1
2(sin(A + B)+sin(A−B)), (1.11)

which we will find very useful in doing integrations like
∫

cos(nx)cos(mx)dx which turn up later on.
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The double angle cases

sin2x = 2sinx cosx

cos2x = cos2 x−sin2 x = 2cos2 x−1 = 1−2sin2 x

cos2 x = 1
2(1+cos2x)

sin2 x = 1
2(1−cos2x)

come up often; we get the “half angle” cases by just substituting in y = 2x, x = y/2 in the above.

Using the basic identities we can easily derive plenty more,such as

sec2 A = 1+ tan2 A

cosC +cosD = 2 cos1
2(C + D) cos1

2(C−D).

We should also note (see Thomas 3.4) that for any constantk,

d(sin(kx))
dx

= k cos(kx),
d(cos(kx))

dx
= −k sin(kx) .

Both sin(kx) and cos(kx) therefore obey1

d2y
dx2 = −k2y .

and it can be proved that these give all solutions, i.e.

d2y
dx2 = −k2y ⇔ y = acos(kx)+ bsin(kx) (1.12)

for some constantsa andb. We could also write the right side as a combination ofeix ande−ix.

1.2 Ln, or loge, exp, and hyperbolic functions

(See Thomas section 7.2)
The natural logarithm lnx can be defined as

lnx =
∫ x

1

dt
t

.

This implies ln1= 0. Note that this is not a good definition ifx < 0, but it is easy to show that for negativex,
∫ x du/u = ln |x|+ constant. The numbere (Euler’s number) is then defined by lne = 1. (After π , this is the
second most important constant in maths).

From the definition it is obvious that
dlnx
dx

=
1
x

.

One also finds:
ln(ab) = lna + lnb ,

Repeated application of this shows ln(an) = n lna for integern, and it turns out this is true for any powerp
i.e.

lnxp = p lnx,

1Those who have done applied maths. at A-level or later may recognize this as an equation for simple harmonic motion.
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In particular, either puttingp = −1 in the above, orb = 1/a in the previous equation, gives us

ln(a−1) = ln(1/a) = − ln(a)

and hence
ln(a/b) = lna− lnb .

Note that ln(a + b) 6= lna + lnb (unlessa + b = ab).

We can define exp (see Thomas 7.3) to be the inverse function toln, so that exp(lnx) = ln(expx) = x.
Then exp1= e and expr = er. Note that exp(a + b) = eaeb NOT ea + eb. For any numbera, a = elna and
henceax = (elna)x = ex lna. In particular, this enables us to relate the usual logarithms (base 10) to natural
logarithms since ifx = log10y, y = 10x = ex ln10, so lny = x ln10 andx = lny/ ln10. For a generala we can
define loga y = x to be such thaty = ax, so lny = loge y.

One can show that
dexpx

dx
= expx ;

to prove that, takey = expx, take ln of both sides so lny = x, then differentiate giving(1/y)dy/dx = 1 (by
the chain rule), and rearrange.

We can now useex to define the hyperbolic functions (see Thomas 7.8)

coshx = 1
2(ex + e−x), sinhx = 1

2(ex − e−x) .

These functions have identities and derivative propertiesthat run closely parallel to those of sin and cos. If
you know the trigonometric identities, the identities for hyperbolic functions can be recovered by substituting
cosh for cos andisinh for sin, wherei2 = −1.

From differentiatingex we find

dsinhkx
dx

= k coshkx,
dcoshkx

dx
= k sinhkx .

Thence
d2y
dx2 = k2y ⇔ y = acosh(kx)+ bsinh(kx) (1.13)

for some constantsa andb (we can also writey as a combination ofex ande−x).

Comparing Eq. 1.13 with 1.12, we now see how to solved2y/dx2 = Cy for any constantC : if C is
positive, we definek =

√
C and get 1.13, while if C is negative we definek =

√
−C and get 1.12; finally if

C = 0 we easily integrate twice to gety = ax + b.

1.3 Double and triple integrals

(See Thomas 15.1 and 15.4)
First let us revise the idea of 2-D integration.

Example 1.1. Integrate the functionf (x,y) = x2y2 over the triangular areaR: 0≤ x ≤ 1, 0≤ y ≤ x.

We can write this integral as
∫

R

f (x,y)dA,
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Figure 1.1: Integrating over the triangular regionR : 0≤ x ≤ 1, 0≤ y ≤ x.

where dA is an area element. But the area of a little rectangle of length δx in thex-direction and lengthδy in
they-direction isδA = δxδy; hence we can rewrite dA as dA = dxdy. Thus the integral we want (cf. Fig. 1.1)
is

∫ ∫

f (x,y)dxdy =

∫ 1

x=0

(

∫ x

y=0
x2y2dy

)

dx

=
∫ 1

x=0

(

x2
∫ x

y=0
y2dy

)

dx

=
∫ 1

0
x2

(

1
3

x3
)

dx

=

[

1
18

x6
]1

0
=

1
18

.

Here there are two key points to note: the limits on the (inner) y-integral depend onx, and in the second
step we have moved thex2 outside they integral because it does not depend ony; so, thex2 behaves like a
“constant” inside they-integral , but not for thex integral.

An area integral such as this is often called a double integral (because it can be rewritten as two 1-D
integrations). Some authors use two integration signs, to remind you that it is an area integral: thus they
would write

∫ ∫

f (x,y)dA. In this course,whenever it is obvious that an integral is over area, we shall
generally just write

∫

f (x,y)dA.

Similarly some books write
∫ ∫ ∫

f (x,y,z)dV for a volume integral:where no confusion will arise, we
shall just write

∫

f (x,y,z)dV .

We shall need to put in all the integral signs when obtaining avalue by doing the two or three integrations
with respect to coordinates.

Exercise 1.1. Calculate
∫

R
f (x,y)dA for

f (x,y) = 1−6x2y and R : 0≤ x ≤ 2,−1≤ y ≤ 1.

[Answer: 4] 2

Note that in that exercise, the region of integration is a rectangle, so the limits of both thex- andy-
integrations were constants so one could do thex- or they-integration first – the answer will be the same.
This holds for any rectangular region in 2-D , or for a cuboid when we come to 3-D integration.

5



In example 1.1, we had a triangle; now the upper limit of the “inside” integral depends on the “outer”
variable. upper limit of they-integral wasx, so they-integration had to be performed first with the limits as
given. Otherwise the answer would have read

∫ ∫

f (x,y)dxdy =
∫ x

y=0

(

∫ 1

x=0
x2y2 dx

)

dy =
x3

9
.

This depends onx, which is ridiculous as the answer is for a whole area, not some value ofx. If we want to
change the order of integration we need to takey going from 0 to 1, thenx runs fromy to 1 (check the sketch);
now we have to put thedx integral on the inside, and we get

∫ ∫

f (x,y)dxdy =
∫ 1

y=0

(

∫ 1

x=y
x2y2dx

)

dy.

Check that this does give the same answer.

It’s important that you understand how to get these limits: when doing a numerical evaluation of a multiple
integral, there are several rules to remember :

i) Work out the limits on each variable from a sketch.

ii) The limits on each integral may depend on the variablesx,y etc appearing asdx,dy outside that integral,
but should not depend on those inside it. So the limits on the outermost integral sign should not depend
on any ofx,y,z; if dx is the outermost integral

iii) The limits on each integral apply to the “matching” variable, again working from inside to outside. So
the last integral sign matches the first one ofdx,dy,dz etc.

iv) Evaluate the resulting multiple integral from the “inside out”, so you evaluate the innermost integration
first. Putting in brackets can be helpful here, as in the example above.

It is a straightforward step from double integrals to volumeintegrals (triple integrals) of the form
∫

V f (x,y,z)dV .
In Cartesian coordinates we have dV = dxdydz (the volume of a 3-D rectangular box) and so

∫

V
f (x,y,z) dV =

∫ ∫ ∫

V
f (x,y,z) dxdydz.

Sometimes the geometry of the volume will make other choicesof coordinate system preferable. In
Thomas 15.3 and 15.6, which were studied in Calculus II, two-dimensional plane integrals in polar coordi-
nates, and triple integrals in spherical and cylindrical polars are discussed: you will find it very useful to
revise those sections. For a general change of coordinate system from Cartesians(x, y, z) to (u, v, w),

∫ ∫ ∫

V
f dxdydz =

∫ ∫ ∫

V
f J dudvdw

whereJ is the Jacobian determinant of(x, y, z) with respect to(u, v, w). This determinantJ is the volume
ratio of the two coordinate systems: if we take an infinitesimal cuboid in(u,v,w) space of volumedudvdw,
this will map to a parallelepiped inx,y,z space, andJ is the ratio of those volumes (if you need to revise this
in more detail, see Thomas 15.7).

Exercise 1.2. Evaluate
∫ ∫ ∫

ex dxdydz over the volumeV of the tetrahedron bounded by the four planes
x = 0, y = 0, z = 0 andx + y + z = a (a > 0). [Answer:ea − 1

2a2−a−1.] 2
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1.4 Curves and surfaces

We shall use various geometrical shapes in examples, so we need the equations for them. The main ones
are so-called ‘conic sections’ in two dimensions, and related three-dimensional surfaces. Other courses also
discuss more complicated shapes (see e.g. Thomas 10.6 and 10.7).

First we discuss curves in two dimensions. There are three main ways to specify a curve:

One way is to give an equationy = f (x); a second way is to give an equationg(x,y) = 0: the curve is
then the set of points(x, y) obeying the equation. Given the first form, we can get the second by defining
g(x,y) = y− f (x) , but not necessarily the converse

A third way is theparametric form in terms of two functions of some variablet: x = a(t), y = b(t) (see
Thomas 3.5). Sometimes we can taket = x itself. The parametrized form carries extra information, about
which direction and how fast we go along the curve ast changes.2 We will see a lot more examples of the
parametrised form in Chapter 2

Using the second way, some standard curves are:

x2 + y2 = a2 circle, centre(0, 0), radiusa (1.14)

x2

a2 +
y2

b2 = 1 ellipse, centre(0, 0), semi-major axesa andb (1.15)

y = ax2 + b parabola, symmetric aboutx = 0 (1.16)

cy2− kx2 = a2,(ck > 0) hyperbola, symmetric aboutx = 0 andy = 0 (1.17)

(See Thomas 1.2, 1.5.) The special case of a hyperbola witha = 0 is just a pair of straight lines. These curves
involving only constants and powers up tox2 andy2 are known as theconic sections.

To recognize these, first look for the coefficients of thex2 andy2:
if one is 0, but the corresponding variable appears linearly, it’s a parabola;
if they have the same sign it’s an ellipse (or as a special casea circle), and
if they have opposite sign it’s a hyperbola

(assuming the remaining constants allow there to be some points:x2 + y2 = −5 has no real points).

What if the equation is quadratic but not one of these standard forms? Given

x2 +6x + y2+8x = 0

we can carry out a process called ‘completing the square’ to write it as

(x +3)2+(y +4)2 = 25

which we now recognize as a circle radius 5, centre(−3,−4): this circle passes through the origin. Similar
methods can be used to recognize the other standard curves ifthey are given relative to origins different from
the ones used in the most standard forms below (cf. Thomas 1.5).

We can also recognize the case where the axes have been transformed, in a similar way. For example,
xy = b2 ⇔ (y + x)2− (y− x)2 = 4b2, so it’s a hyperbola where the symmetry axes are at 45◦ to those used in
(1.17) withc = k = 1 and with 4b2 = a2. In general we have to complete the square on the terms quadratic in
x andy: for example the rearrangement

x2 +4xy +3y2 = (x +2y)2− y2

shows the curvex2 + 4xy + 3y2 = 6 is not an ellipse, as you might think from the fact the coefficients ofx2

andy2 are both positive, but a hyperbola.

2The latter approach is used heavily in Geometry II.
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Parametrized curves are also useful, especially when calculating line integrals along curves later on.
Here are some standard parametrizations for the circle, ellipse and hyperbola:

x2 + y2 = a2 (x, y) = (acosθ , asinθ ) (1.18)

x2

a2 +
y2

b2 = 1 (x, y) = (acosθ , bsinθ ) (1.19)

y2− x2 = a2 (x, y) = (asinhθ , acoshθ ). (1.20)

These work because of the identity (1.6) and its hyperbolic counterpart cosh2 x− sinh2 x = 1. (See Thomas
10.4 for futher or alternative parametrizations.) We shalluse these, especially the first two, later.

1.5 Surfaces in 3-D

[Here we meet material you may not have seen before.]

For surfaces in 3 dimensions, there are similarly three mainways to give the equations. One is to give
one coordinate in terms of the other two, e.g.z = h(x,y). Another is to use a single equationV (x, y, z) = 0.
The third is by a parametrization in terms of two variables e.g. (x(u, v), y(u, v), z(u, v)) (see Thomas 16.6,
and more details in Chapter 2 ).

We shall again focus on surfaces described by quadratics inx, y andz at worst. To work out what the
surface is like, one good way is to consider letting one coordinate be constant, for examplez = d, which
means we are considering a “slice” through the surfaceV = 0 at the planez = d. The intersection of a curved
surface and a plane is generally a 1-D curve, which we should be able to identify from the previous section.
Then we just stack those curves for varyingd.

One simple case is
x2 + y2 = a2

The equation is the same as for a circle, but as we are now in 3 dimensions, it impliesz can take any value.
In each planez = d we have a circle. Hence, this is an infinite circular cylinderalong thez-axis. Very often
some bounding values ofz are given, e.g. 0≤ z ≤ 2. Then we have a finite cylinder, the shape of a drinks can.

Example 1.2. What is the surfacey
2

a2 + z2

b2 = 1?

It is an infinite elliptical cylinder along thex axis.

We can also have parabolic and hyperbolic “cylinders”, using (1.16) and (1.17).

Another simple three-dimensional surface is that of asphereof radiusa centred at the origin:

x2 + y2 + z2 = a2 . (1.21)

Example 1.3. What is the surfacex2 + y2+ z2 = a2, x ≥ 0?

The hemisphere to the right of the planex = 0.

We can put together cases where we get one of the standard types of curve listed earlier in planesz = d
and different ones in planesx = k or y = m say.
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For example, we can generalize the ellipse (1.15) to

x2

a2 +
y2

b2 +
z2

c2 = 1 (1.22)

(see Thomas, 12.6). In this case each of the three types of cut-plane gives an ellipse as the curve. The surface
is anellipsoid. This shape, and the ones that follow, are shown in diagrams 12.48-12.52 in Thomas. (also,
the Wikipedia article on “Quadrics” has some pretty graphics).

If instead we had taken
z
c

=
x2

a2 +
y2

b2 , (1.23)

we then have an ellipse in each planez = d but a parabola in each planex = k or y = m. This is anelliptic
paraboloid. Changing the plus to a minus in this equation gives a hyperbolic paraboloid.

Similarly we can obtain an(elliptic) hyperboloid as

x2

a2 +
y2

b2 −
z2

c2 = +1 . (1.24)

Here we have ellipses in planesz = d, and hyperbolae in the planesx = 0 andy = 0. Moving thez2 term over
to the RHS, we see the RHS is positive for anyz, so there is an ellipse for any fixed value ofz and the surface
has just one piece (we say ‘one sheet’).

However, if instead we had a−1 on the right, i.e.

x2

a2 +
y2

b2 −
z2

c2 = −1 . (1.25)

we can rearrange into
x2

a2 +
y2

b2 =
z2

c2 −1 . (1.26)

It’s now clear that ifz2/c2 > 1, i.e. z < −c or z > c), we again get an ellipse in thexy plane; but if
−c < z < c the RHS is negative and there are no solutions forx,y. This is a hyperboloid of two sheets.

The elliptic paraboloid and hyperboloid have circular special cases wherea = b. Note also that we can
swapx, y andz around in these forms so we have different choices of axes forthe same shapes.

There is also the special case of the hyperboloid equation where the constant on the RHS is zero, i.e.

x2

a2 +
y2

b2 −
z2

c2 = 0 (1.27)

This is a cone through the origin. Taking a plane through the origin such asx = 0, we get two straight lines,
while taking planes perpendicular to the axes but not through the origin gives ellipses or parabolae. In fact all
the quadratic curves (ellipses, circles, parabolae and hyperbolae) can be obtained by intersecting the circular
conez2 = x2 + y2 with planes (not necessarily perpendicular to the axes): this is why they are called conic
sections (see Thomas chapter 10).

If we are given a quadratic surface in a different form, we canfirst rearrange it into one of the forms
above: rearrange so that all thex,y,z terms are on the left, and the constant on the right; if the constant is not
zero, divide by it to get a+1 on the right; then look at thex2, y2 andz2 parts: if two or three of these have
negative coefficients, just multiply by−1 to make at least two of the coefficients ofx2, y2, z2 positive, Then,

If all 3 are positive, it’s an ellipsoid (or a sphere).
If two are positive and one negative it’s a hyperboloid, and we need to check the constant term
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to see if it’s one sheet or two
If one of the threex2,y2 or z2 terms is zero, but there is a linear term in the corresponding

variable, it’s a paraboloid: the relative sign of the other two show if it is elliptic or hyperbolic.
If one variable is missing completely, it’s a “cylinder” given by the matching 2-D curve.

As in the case of curves, we can work out what the shape is if theequations are not in standard form but
have shifted origins or rotated axes, by completing the square. For this course, we’ll keep it simple though,
so we will only be looking at surfaces which are aligned with the coordinate axes.

Now for some parametrized versions (see Thomas 16.6)

Implicit form Parametric form

Cylinder x2 + y2 = a2 (x, y, z) = (acosθ , asinθ , z) Parametersθ ,z (1.28)

Sphere x2 + y2+ z2 = a2 (asinθ cosφ , asinθ sinφ , acosθ ) Parametersθ , φ (1.29)

Ellipsoid
x2

a2 +
y2

b2 +
z2

c2 = +1 (asinθ cosφ , bsinθ sinφ , ccosθ ) Parametersθ , φ (1.30)

Hyperboloid
x2

a2 +
y2

b2 −
z2

c2 = 1 (acosu, bsinucoshv, csinusinhv) Parametersu,v (1.31)

1.6 Vectors

(Note: this is in chapter 12 in Thomas but in Geometry I you used Hirst)
Vectors can be introduced as displacements in space, calledposition vectors. To describe a position vector,
we need to specify its direction and its length or magnitude (to say how far we go in the given direction).
This is a geometric definition. A vector is different from ascalar, a quantity which has only a magnitude but
no direction.

One can draw a vector as an arrow of the appropriate length anddirection. Vectors are usually notated in
print by boldface type, e.g.a, and in handwriting by under- or over-lining such asa,~a, or a

˜
.

Warning: When writing, it is tempting to miss off the under/overlinesto save time. This is a bad idea,
because if you confuse what’s a scalar and what’s a vector in your working, you immediately get nonsense.

To define a vector algebraically, i.e. in a formula, we can usethe Cartesian coordinates of the point to
which it displaces the origin, e.g.

r = (x, y, z). (1.32)

Note: As you saw in Geometry I, we can write vectors either as row or column vectors. The column vector
form is useful if you are multiplying by matrices (like rotation matrices), but in this course we shall mainly
use the row vector form which is more compact.)

Herex, y andz are called thecomponents of r . We may refer to(x, y, z) as the pointr . From now on we
shall use the notationr only for this vector.

The length of a vectorv is denoted by|v| or sometimes justv; this is a scalar. The vectorr has length
r =

√

x2 + y2+ z2, by Pythagoras’ theorem in 3 dimensions.

To add vectorsa andb we simply take the displacement obtained by displacing firstby a and then byb
(the result can be defined as the diagonal of the parallelogram with sidesa andb). In components this says
thatv = (v1, v2, v3) andw = (w1, w2, w3) have the sum

v+w = (v1 + w1, v2 + w2, v3 + w3).
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Subtraction can then be defined similarly. The zero vector0 is the one with zero magnitude (and no well-
defined direction!).

It is now easy to show this obeys the usual rules of addition (and subtraction).3

The displacement from a pointr1 to a pointr2 is r2− r1.

We can multiply a vector by a scalar (a number)λ , simply by multiplying its magnitude, preserving the
direction. In components, ifv = (v1,v2,v3) then we have

λv = (λ v1, λ v2, λ v3).

This operation also obeys very simple and obvious rules.4 This multiplication gives us a way to define the
unit vector (the vector of length 1) in the same direction asv, denoted bŷv, by v̂ ≡ v/|v| (strictly, we should
write the number first so we would have to write(1/|v|)v, but in practice it’s obvious what we mean).

These rules give us another common way of writing a vector. Wenote that we can arrive at the same total
displacement by first moving along thex-axis, then parallel to they−axis then parallel to thez−axis; and we
can express this by defining the unit vectorsi, j andk along the directions of the three axes by

r = xi + yj + zk.

This way of writing (1.32) has the advantage of making it clearer how the components change if we change
our choice of axes: if we rotate our axes to a different systemx′,y′,z′, we will get 3 new unit vectors e.g.i’ ,
j’ andk’ , and converting vectors between systems looks like a matrixmultiplication - more on this later.

Note that all of these statements about position vectors in 3dimensions can very simply be applied in 2
dimensions also, with obvious minor changes.

Although we have motivated vectors by introducing them as displacements, they can represent, or be
interpreted as, many other things: for example, a force, a velocity, inputs and outputs in an economic model,
and so on.

A parametric equation of the type

r = p+ tq, −∞ < t < ∞ (1.33)

defines a line through pointp parallel to directionq. For exampler = tk, −∞ < t < ∞ is thez axis.

Using this, we can get the straight line going through two given pointsr1 andr2: the vector fromr1 to r2

is r2− r1, so the (infinite) line through them is

r = r1 + t(r2− r1), in f ty < t < ∞ (1.34)

If instead we take a range 0<≤ t ≤ 1 in the above, this gives us the finite line segment with end-points at the
two given points. This will be very useful later on,memorise it.

3This means that for any vectorsa, b andc,

a+b = b+a, (a+b)+c = a+(b+c), ∃0 such thata+0 = a,

and givena, ∃(−a) such thata+(−a) = 0. These rules are purely abstract and make no reference to displacements or three dimensions,
and are part of the general definition of a vector space which is given in Linear Algebra I. Those who have encountered groups will
recognise that they ensure that the space of vectors is an additive group under vector addition.

4More precisely, for any vectorsa andb, and numbersλ andµ , we have

λ(a+b) = λa+λb, (λ + µ)a= λa+ µa, (λ µ)a = λ(µa)

and 1a = a. For a general vector space, as defined in Linear Algebra I, the scalars are elements of a general field but here we shall only
use the real numbersR. However, these rules do apply whenλ andµ are elements of a general field, for instance the complex numbers
C.
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Example 1.4. Medians of a triangle

Vectors can often be used to derive geometrical results veryconcisely, as this example shows.

Let a,b,c be the corners of a triangle. The midpoint of the side connecting b andc will be 1
2(b + c). A

line through this midpoint anda is

r = a+ t(1
2b+ 1

2c−a), −∞ < t < ∞

which is called the median througha. Puttingt = 2
3 (note: here this choice is a rabbit out of the hat, but we can

find it by writing down a second median and solving for the intersection point) we get the point1
3(a+b+c).

Since this point is symmetric ina,b,c, the medians throughb andc will also pass through it. Hence the three
medians of a triangle intersect at a single point.

If we write out the components of (1.33), with notationr = (x, y, z), p = (p1, p2, p3), q = (q1, q2, q3)
we find

x = p1 + tq1 y = p2 + tq2, z = p3 + tq3,

from which we can eliminatet to get

x− p1

q1
=

y− p2

q2
=

z− p3

q3
,

giving the two independent linear equations (e.g. fory and z in terms of x) needed for a line in three-
dimensional space.

We can now write functions of 3-dimensional positionf (x,y,z) more compactly as functionsf (r). Equa-
tions of the formf (r) = constant define surfaces, the constant surfaces off . A simple example isr2 = 1,
which is a sphere of unit radius centred at the origin. (Recall our notation allowsr ≡ |r |.)

12



Example 1.5. A sphere

The geometrical interpretation of
|r −k|= 1

as a sphere of unit radius centred at(0,0,1) is obvious. Equivalent expressions arex2+ y2+(z−1)2 = 1 and
x2 + y2 + z2−2z = 0.

Warning: One of the commonest errors made by students is to confuse vectors and scalars, in particular
to start adding together the components of a vector. The vector (3, 1, 2) is not the same as the scalar 6. This
may seem obvious now, but the mistake is more easily made whenusing basis vectors likei, j andk; then it
somehow seems to be easier to make the mistake 3i + j +2k = 6.

1.7 Scalar and vector products

We have defined vector addition and subtraction, but not multiplication of vectors. This is more complicated
because to obtain another vector we need to define both a magnitude and a direction (and in general, vector
division cannot be defined at all; we can divide a vector by a scalar λ just by multiplying by 1/λ , but we
cannot divide anything by a vector).

We first define the dot product, or scalar product5, whose result is not a vector but a scalar. For vectorsv
andw, this is defined by

v.w ≡ |v||w|cosθ , (1.35)

whereθ is the angle betweenv andw. An alternative definition in terms of the components(v1, v2, v3) and
(w1, w2, w3) of v andw is

v.w ≡ v1w1 + v2w2 + v3w3 =
3

∑
i=1

viwi.

One can prove that the two definitions are the same by applyingPythagoras’ theorem to a triangle con-
structed as follows. Take sidesv, w andv+w. Draw the perpendicular fromv+w to the line in directionv.
It has height|w|sinθ and meets the directionv at a distance|v|+ |w|cosθ . Now write out Pythagoras with
the lengths in terms of|v|, |w| andθ and again in terms of components and compare the results. Thedetails
are left as an exercise (if you have trouble, look in the online notes for MAS114 Geometry I or in A.E. Hirst,
Vectors in 2 or 3 dimensions, Arnold 1995, chapter 3).

We note in particular that two non-zero vectorsv andw are perpendicular (θ is a right angle) if and only
if v.w = 0.

Example 1.6.(This example was used in Geometry I.)
Find cosθ whereθ is the angle betweenv = (1, 3, −1) andw = (2, 2, 1).

v.w = 1.2+3.2+(−1).1= 7 = |v||w|cosθ ,

|v|2 = 12 +32+(−1)2 = 11,

|w|2 = 22 +22+12 = 9, so

cosθ =
7√

11
√

9
=

7

3
√

11

5In a more abstract setting (such as in Linear Algebra I) this may also be called the inner product.

13



From either form of the definition we can easily derive various algebraic rules.6

A geometrical application of the dot product is in giving theequation of a plane. The plane through a
fixed pointp perpendicular to a fixed vectorv is given by the set of all pointsr which haver −p perpendicular
to v, as is easily seen from a sketch. Since two perpendicular vectors have a dot product of zero, this gives

(r −p).v = 0 (1.36)

This easily rearranges tor .v = p.v and the right-hand side is just a constant for givenp,v.

In components, ifv = (a, b, c) andp.v = d the equation for a plane readsax + by + cz = d. In practice
people often choose a unit vectorn when specifying a plane in this form, so thatp.n becomes the perpendic-
ular distance of the plane from the origin. Then, the distance of any other pointr1 from that plane is given by
(r1−p).n = r1.n−p.n = r1.n−d (the sign here tells one which side of the planer1 is on).

The vector product: To define a product of two vectors which is a third vector, we need to define a
direction from two vectorsu andv. The only way to do this which treats the two vectors equally is to take the
perpendicular to the plane in whichu andv lie. However, this does not fully define a direction, becausewe
need to know which way to go along the perpendicular. For thatthe convention is to use the so-called right-
hand rule: hold the fingers of your right hand so they curl round fromu to v and then take the direction your
thumb points (see Thomas figures 12.27 and 12.28). If you do DIY, you may find it helpful to remember that
this is the direction a normal screw travels if you turn your screwdriver clockwise. Note that this definition
only works inthree dimensions: there is no well-defined vector product inn dimensions forn > 3.

The magnitude ofv×w is defined to be|v||w|sinθ (θ as before). Geometrically this is the area of a
parallelogram with sidesv andw. Note that for perpendicular vectors this rule implies thatthe magnitude is
|v||w|. These rules have the consequences that for any vectorsu, v andw and any scalarλ ,

v×w = −w×v,

(λv)×w = λ (v×w) = v× (λw),

u× (v+w) = (u×v)+ (u×w),

(u+v)×w = u×w+v×w,

andv×w = 0 for non-zerov,w if and only if v andw are parallel or anti-parallel (in particular,v×v = 0 for
anyv).

Note: it is particularly important to note the sign-change property that v×w = −w× v. This looks
“silly”, but is a consequence of the “handedness” of three-dimensional space, and which way round we
choose to label our three coordinate axes.

From the notation used, the vector product is often called the cross product.7

6The main ones are thatv.w = w.v and that for any vectorsu, v andw and any scalarλ ,

v.(λw) = λ(v.w) = (λv).w,

u.(v+w) = (u.v)+(u.w),

(u+v).w = (u.w)+(v.w),

v.v = |v|2 ≥ 0,

v.v = 0⇔ v = 0.

7You will also find that in some texts it is denotedv∧w, but I strongly advise against using this notation as it leads to confusion in
more general settings wherev∧w is not a vector. The reason for this misuse is thatv∧w is what’s called a two-form, and there is an
operation called the Hodge dual, denoted by∗, such that in three dimensions∗(v∧w) = v×w.
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To get the expressions for the cross product in terms of components, we can start by noting that the unit
vectorsi, j andk are perpendicular to one another (so the vector product of any two distinct ones among them
has magnitude 1). This means thati × j must have length 1 and be perpendicular to both of them, so it is
either+k or−k. Since the usualx, y andz axes, in that order, are a right-handed set, it will turn out that

i × j = +k, j ×k = +i, k × i = +j ,

and therefore
j × i = −k, k × j = −i, i ×k = −j .

(To remember these , think of the sequenceijkijk ...; if the two vectors in the cross-product are in the same
order as in that sequence, the RHS has a+ sign, while if they are in reverse order there is a− sign.)

Also i × i = j × j = k ×k = 0. Using these we easily obtain

(v1i + v2j + v3k)× (w1i + w2j + w3k) = (v2w3− v3w2)i +(v3w1− v1w3)j +(v1w2− v2w1)k. (1.37)

This can also be written as the formal determinant
∣

∣

∣

∣

∣

∣

i j k
v1 v2 v3

w1 w2 w3

∣

∣

∣

∣

∣

∣

.

One geometrical use of the cross product is in forming the volume of a parallellepiped with sidesu,v
andw. Thinking of (say)u andv as the base, andθ as the angle betweenu× v andw, so that the height is
|w|cosθ , we see that

Volume of parallellepiped= (u×v).w (1.38)

(positive ifu,v andw are a right-handed set). This quantity is called thescalar triple product and it is easy to
show that

u.(v×w) = v.(w×u) = w.(u×v)

(but this is−v.(u×w) etc, remember). We can also show that swapping the dot and cross gives the same
result, i.e.(u×v).w = w.(u×v) = u.(v×w) from above , but note that the brackets also move, i.e. the cross
product must be done first (inside the brackets) otherwise the result is nonsense. (Some textbooks may omit
the brackets, but this is potentially confusing). Clearly swapping the two vectors inside the bracket changes
the sign, and we can show that this is also true for swapping any two of the three vectors.

Exercise 1.3. Prove from the definitions that, for alla, b andc,

a× (b×c) = (a.c)b− (a.b)c.

This quantity is called thevector triple product ; note that the position of the brackets matters here.

2
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1.8 Gradients and directional derivatives

(See Thomas 14.5 [and 16.2])
In Calculus II you met functions of more than one variable. Those that were discussed there werescalar
functions, i.e. functions whose value at a particular point is a number. Such a scalar quantity (magnitude but
no direction) that depends on position in space is called ascalar field. An example would be the temperature
in a room – it has magnitude but not direction (so it is a scalar), and it is (in general) a function of position.

Suppose thatV (x,y,z) or V (r) is a scalar field defined in some region. Then we can define a vector, the
gradient of V , at each point, which we denote∇V , as follows:

∇V =
∂V
∂x

i +
∂V
∂y

j +
∂V
∂ z

k.

So thex-, y- and z-components of the new vector are∂V/∂x, ∂V/∂y and ∂V/∂ z. See Thomas 14.5 if
you need to revise this in more detail. Sometimes instead of∇V we write gradV : the two notations are
interchangeable.

Example 1.7. If V (x,y,z) = x2sinz, calculate∇V .

In this example,∂V/∂x = 2xsinz, ∂V/∂y = 0 and∂V/∂ z = x2 cosz. Hence

∇V = 2xsinz i + x2coszk.

Exercise 1.4. Evaluate the gradient∇ f of the following scalar fields.

(a) f = x + y + z,

(b) f = yx2 + y3− y +2x2z,

(c) f = a.r , wherea is a constant vector.

2

Now ∇V tells us howV changes if we move from one point to a nearby point. Suppose westart at a point
r = (x,y,z), and then move a small distancedr = (dx,dy,dz) to the new pointr +dr = (x+dx,y+dy,z+dz):
we will get a small change inV , given by

dV ≡ V (x +dx,y +dy,z+dz)−V(x,y,z)

=
∂V
∂x

dx +
∂V
∂y

dy +
∂V
∂ z

dz

Here the second line uses the Taylor series in more than one variable, and discards terms in second and higher
derivatives sincedr is small. But(dx,dy,dz) = dr , and so the right-hand side is just∇V.dr . Hence for a small
changedr , the change inV is

dV = ∇V.dr (1.39)

Note: to use this, youmust evaluate∇V at the point concerned.

In our original definition of grad, it was implicitly assumedthat we were working in terms of some
specified Cartesian coordinate system(x,y,z). Equation (1.39) is important, because we can use it as a more
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fundamental definition of grad, which will enable us to writedown∇V in more general coordinate systems.
We shall return to this point later, in Chapter 5

Next, consider a surface
V (r) = constant,

and suppose that the pointr1 is on that surface. If dr is a displacementon this surface,V (r1 +dr) = V (r1).
Thus dV = ∇V |r1.dr = 0. Since this applies for every small displacement dr in the surface,∇V |r1 must be
perpendicular to the surface atr1. This gives us a way of finding a normal to a surface when the surface is
specified by a single equation: the unit normaln will be ∇V/|∇V | evaluated at the point concerned.

Suppose we now want a normal line toV = constant, or a tangent plane (see Thomas 14.6). As we know
from (1.33) and (1.36), a line through pointa in directionq can be written in parametric form as

r = a+ tq, −∞ < t < ∞,

while the plane througha perpendicular toq is

(r −a).q = 0.

so all we have to do is insert values ofa andq in these formulae. For the tangent plane and normal line to a
surface at a given pointp, this gives

(r −p).∇V |p = 0 and r = p+ t∇V |p.

It is sometimes convenient to eliminate the parametert for the normal line, which we can do by taking
the cross product with∇V |p:

(r −p)×∇V |p = 0.

Note that the forms(r −p).n = 0 and(r −p)×n = 0, using the unit normaln, would give the same plane or
line (though inr = a+ tn such a change alters the values oft for given points) so we need not calculate|∇V |
to get the tangent plane or normal line.
Repeated Note:to use this, youmust evaluate∇V at the point concerned.

Exercise 1.5. Find equations for the (i) tangent plane and (ii) normal lineat the pointP0 on each of the
surfaces:

(a) x2 +3yz+4xy = 27, P0 = (3, 1, 2).

(b) y2z+ x2y = 7, P0 = (2, 1, 3).

[Answers: (a) 10x +18y +3z = 54, r = (3+10t)i +(1+18t)j +(2+3t)k
(b) 4x +10y + z = 21, r = (2+4t)i +(1+10t)j +(3+ t)k] 2

Suppose now that we want to calculate the rate of change ofV (r) in a particular direction specified by the
unit vectort. Let s be the distance travelled in the direction oft; then dr = t ds. So dV = ∇V.t ds. Hence we
can conclude that the rate of change ofV in the direction oft is

dV
ds

= ∇V.t = t.∇V.

t.∇V is called thedirectional derivative. Now

∇V.t = |∇V | |t| cosθ = |∇V | cosθ ,

whereθ is the angle between the vectors∇V andt. This is maximized when cosθ = 1, i.e. whenθ = 0. Thus
V changes most rapidly in the direction of∇V , and|∇V | is this most rapid rate of change. It is this property,
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in the two-dimensional case, that gave rise to the name gradient, because|∇V | is the gradient of the surface
given byz = f (x, y) in that case. Correspondingly the maximum decrease is whent is opposite to∇V .

Example 1.8. Find the directions in which the functionf (x,y,z) = (x/y)− yz increases and decreases
most rapidly at the point P,(4,1,1).

We can describe the directions in whichf increases and decreases most rapidly by specifying the unit
vectors in those directions. Now

∇ f =
1
y

i −
(

x
y2 + z

)

j − yk = (1, −5, −1) at P.

The rate of change off in the direction of unit vectort is ∇ f .t. This has its maximum whent is in the same
direction as∇ f ; so the directiont in which f increases most rapidly is

∇ f
|∇ f | =

1√
27

(1, −5, −1).

and the actual rate is
√

27. The rate ofdecrease of f is greatest, at−
√

27, whent is in theopposite direction,
i.e.

−1√
27

(1, −5,−1)

Exercise 1.6. Find the directional derivative ofΦ at the point(1, 2, 3) in the direction of the vector
(1, 1, 1) where

Φ =
x2

3
+

y2

9
+

z2

27
.

2

We can write∇ on its own as

∇ = i
∂
∂x

+ j
∂
∂y

+k
∂
∂ z

and work with it like a vector field, although it is in fact not avector field (since we cannot say what numerical
value its components have at a particular point); strictly speaking∇ is avector differential operator . The
name of the symbol∇ is ‘nabla’ but often in speech we say ‘del’. It is easy to see how to take a two-
dimensional version of∇. We will return to∇ in Chapter 3, where we shall see how the∇ operator can also
be used to differentiate vectors.
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