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Chapter 1

Introductory material

Last revised: 29 Sep 2010
This chapter gives a quick review of the key parts of the pyeiste courses (Calculus | and II, and

Geometry I) which we will actually use in Calculus Ill, addisome extra material. Those parts which are
revision will be without examples.

1.1 Trigonometric functions

1.1.1 Values

(See Thomas 1.6)
We can quickly obtain the value of a trigonometric functiondny argumentin terms of values foe [0, %n]
by remembering a few things. First we have the table

| 0° | 30° = Z radians| 45° = Zrad. | 60° = Zrad. | 90° = 7 rad.
cos| 1| ¥ | 5 | & o
wlo] & | & | % |1
To get the sign for other values we can use the mnemonic table
Radians Degrees | sin cos tan| Positive functions

(0, 3m) (0°,90°) +  +  + [Al

Amm (90°,180) | + — — | Sin
(m,3m) (180,270) | — - + | Tan
(3m2m (270,360) | — + — | Cos

sometimes called the ‘Add Sugar To Coffee’ rule — or use Th&dmariant “All Students Take Calculus”.
(Note: to be entirely accurate we should have special rowsigtable for the valueénetc because at those
points one or more of the functions will be zero or unbounyged.
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Then we remember what happens when we repldne—x, X+ 11/2 orx+ 1T

cog—X) =C0sX, Sin(—Xx) = —sinx,
m . : m
cogX+ E) = —sinx, sin(x+ E) = COSX, (1.1)
COSX+ T) = —COX, Sin(x+ 1) = —sinx.

These are very easy to derive fra = cosx+ i sinx, remembering tha#’/2 =i, €™ = —1. Using them
in combination we can get
CcogTT—X) = —COX, Sin(7T— X) = Sinx.

and so on.

More generally

cogx+ (m+ %)n) = (—1)™Vsinx, sin(x+ (m+ %)n) = (—=1)™cosx, (1.2)
cogx+nm) = (—1)"cosx, sin(x+nm) = (—1)"sinx. (1.3)

wherem andn are integers. These identities enable us to relate the vedueant to a value in the first
quadrant (i.e. the rand®8, %n]). Remember the special casesxct 0,

cognm) = (—1)", sin((n+ %)n) =(-1" (1.4)

cog(n+1/2)m) =0, sin(nm) = 0. (1.5)

which will turn up regularly later on.

1.1.2 Identities for the trigonometric functions

The most important formulae to remember are

SifA+cogA=1 (1.6)
coA+ B) = cosAcosB — sinAsinB (1.7)
sin(A+ B) = sinAcosB + cosAsinB. (1.8)

If you have trouble remembering which of the last two is whihd which has the minus in it, try substituting
some special values suchAs- 0 orB = %nand checking the result. For example, takig: 0 in the last
equation gives siB = 0+ sinB, consistent, whereas if you had tried @+ B) = sinAcosB — cosAsinB you
would get sirB = 0 — sinB, clearly wrong. From these and the earlier results Eq. 1. fj&te

cogA— B) = cosAcosB + sinAsinB
sin(A— B) = sinAcosB — cosAsinB.

and by adding or subtracting various pairs of the above égustwe get

COSACOSB = 3(Cog§A+ B) + cogA— B)) (1.9)
SiNAsInB = 1 (cogA— B) — cogA+B)) (1.10)
SiNAcosB = 1(sin(A+ B) +sinfA—B)), (1.11)

which we will find very useful in doing integrations likecognx) cogmx) dx which turn up later on.



The double angle cases

Sin 2X = 2 sinx cosx

CosX = co$X—SiPx=2co$x—1=1—2sirfx
cogx= 1(1+cosX)

sifx=1(1-cos¥)

come up often; we get the “half angle” cases by just substiubh y = 2x, x=y/2 in the above.

Using the basic identities we can easily derive plenty msueh as

se¢A=1+tarfA
cosC + cosD = 2 cos}(C+ D) cos3 (C—D).

We should also note (see Thomas 3.4) that for any conktant

d(sin(kx)) d(cogkx)) .
i k cogkx), - —k sin(kx) .
Both sinkx) and coskx) therefore obely
d?y 2
v —k%y.
and it can be proved that these give all solutions, i.e.
d?y 2 .
a2 = —k?y & y=acogkx)+ bsin(kx) (1.12)

for some constan@andb. We could also write the right side as a combinatio@bande .

1.2 Ln, orloge, exp, and hyperbolic functions

(See Thomas section 7.2)
The natural logarithm Ir can be defined as

X dt
Inx:/ —.
1t

This implies In 1= 0. Note that this is not a good definitiornxk 0, but it is easy to show that for negatixe
[*du/u= In|x| + constant. The number(Euler's number) is then defined byédn= 1. (After m, this is the
second most important constant in maths).

From the definition it is obvious that
dinx }

dx X
One also finds:
In(ab) =Ina+Inb,

Repeated application of this showsaR) = nina for integern, and it turns out this is true for any powpr
ie.
InxP = plInx,

1Those who have done applied maths. at A-level or later maygreize this as an equation for simple harmonic mation.



In particular, either puttingg = —1 in the above, ob = 1/ain the previous equation, gives us
In(a!) =In(1/a) = —In(a)

and hence
In(a/b)=Ina—Inb.

Notethat In(a+b) # Ina+Inb (unlessa+ b = ab).

We can define exp (see Thomas 7.3) to be the inverse functibm s that exfinx) = In(expx) = x.
Then expl= e and exp = €. Note that expa+b) = e2e® NOT €2+ €. For any numbea, a=€"2 and
hencea* = (€"2)* = e/"a, |n particular, this enables us to relate the usual logamitifbase 10) to natural
logarithms since ik = log; gy, y = 10¢ = €10, so Iny = xIn 10 andx = Iny/In 10. For a generai we can
define logy = x to be such thag = &*, so Iny = log,y.

One can show that
dexpx

dx

to prove that, takg = expx, take In of both sides so in= x, then differentiate givind1/y)dy/dx =1 (by
the chain rule), and rearrange.

= expx;

We can now use* to define the hyperbolic functions (see Thomas 7.8)
costx= (' +e7¥), sinhx=3(e*—e ).

These functions have identities and derivative propettiasrun closely parallel to those of sin and cos. If
you know the trigonometric identities, the identities fgplerbolic functions can be recovered by substituting
cosh for cos andsinh for sin, wheré? = —1.

From differentiatingg® we find

d sinhkx B dcoshkx

i kcoshkx, - ksinhkx .
Thence
dy i
2= key < y = acoshkx) + bsinh(kx) (1.13)

for some constant@andb (we can also writgy as a combination o ande™).
Comparing Eq. 1.13 with 1.12, we now see how to sal¢g/dx?> = Cy for any constanC : if C is

positive, we defind = +/C and get 1.13, while if C is negative we defike- /—C and get 1.12; finally if
C = 0 we easily integrate twice to ggt= ax+b.

1.3 Double and triple integrals

(See Thomas 15.1 and 15.4)
First let us revise the idea of 2-D integration.

Example 1.1. Integrate the functiori (x,y) = x?y? over the triangular are@: 0 < x< 1,0<y < x.

We can write this integral as
/ f(xy)dA,
#
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Figure 1.1: Integrating over the triangular regigh: 0 <x <1, 0<y < x.

where dA is an area element. But the area of a little rectangle of ledgtin the x-direction and lengttdy in
they-direction isOA = dxdy; hence we can rewriteAlas dA = dxdy. Thus the integral we want (cf. Fig. 1.1)

is
1 X
/ / f(x,y) dxdy / < / x2y2dy> dx
x=0 y=0
1 X
/ <x2/ y2dy) dx
x=0 y=0
e (1e)
[ (%)
1
] -
18 |, 18
Here there are two key points to note: the limits on the (ihgantegral depend om, and in the second

step we have moved th& outside they integral because it does not dependyoso, thex? behaves like a
“constant” inside theg-integral , but not for thex integral.

An area integral such as this is often called a double intdgecause it can be rewritten as two 1-D
integrations). Some authors use two integration signsenairdd you that it is an area integral: thus they
would write [ [ f(x,y)dA. In this coursewhenever it is obvious that an integral is over area, we shall
generally just write [ f(x,y)dA.

Similarly some books writd [ [ f(x,y,z)dV for a volume integralwhere no confusion will arise, we
shall just write [ f(x,y,z)dV.

We shall need to put in all the integral signs when obtaininglae by doing the two or three integrations
with respect to coordinates.

Exercise 1.1. Calculatef,, f(x,y) dA for
f(x,y)=1—-6x% and Z:0<x<2,-1<y<Ll
[Answer: 4] a
Note that in that exercise, the region of integration is aaegle, so the limits of both the andy-
integrations were constants so one could doxher they-integration first — the answer will be the same.
This holds for any rectangular region in 2-D , or for a cuboigen we come to 3-D integration.
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In example 1.1, we had a triangle; now the upper limit of thesitle” integral depends on the “outer”
variable. upper limit of the-integral wasx, so they-integration had to be performed first with the limits as
given. Otherwise the answer would have read

//f(x,y)dxdy = [/XO</Xle2fdx> dy:x—gg.

This depends or, which is ridiculous as the answer is for a whole area, notesgatue ofx. If we want to
change the order of integration we need to takeing from 0 to 1, them runs fromy to 1 (check the sketch);
now we have to put thex integral on the inside, and we get

//f(x,y)dxdy = /ylo (/lexzyzdx> dy.

Check that this does give the same answer.

It's important that you understand how to get these limitesewdoing a numerical evaluation of a multiple
integral, there are several rules to remember :

i) Work out the limits on each variable from a sketch.

i) The limits on each integral may depend on the variaklg®tc appearing adx, dy outsidethat integral,
but should not depend on those inside it. So the limits on tliermost integral sign should not depend
on any ofx,y,z if dxis the outermost integral

iii) The limits on each integral apply to the “matching” varigldgain working from inside to outside. So
the last integral sign matches the first onalrfdy, dz etc.

iv) Evaluate the resulting multiple integral from the “insidet’y so you evaluate the innermost integration
first. Putting in brackets can be helpful here, as in the examipove.

Itis a straightforward step from double integrals to voluntegrals (triple integrals) of the forrfy, f(x,y,z) dV.
In Cartesian coordinates we havweé & dxdydz (the volume of a 3-D rectangular box) and so

/Vf(x,y,z)d\/:///vf(x,y,z) dxdydz.

Sometimes the geometry of the volume will make other choafesoordinate system preferable. In
Thomas 15.3 and 15.6, which were studied in Calculus II, divoensional plane integrals in polar coordi-
nates, and triple integrals in spherical and cylindricdbp® are discussed: you will find it very useful to
revise those sections. For a general change of coordinstersyfrom Cartesian, y, z) to (u, v, w),

///Vfdxdydz:///vfmudvdw

wherelJ is the Jacobian determinant o, y, z) with respect to(u, v, w). This determinand is the volume
ratio of the two coordinate systems: if we take an infinitediouboid in(u, v,w) space of volumeludvdw,
this will map to a parallelepiped iy, z space, and is the ratio of those volumes (if you need to revise this
in more detail, see Thomas 15.7).

Exercise 1.2. Evaluate[ [ [ € dxdydz over the volumé&/ of the tetrahedron bounded by the four planes
x=0,y=0,z=0andx+y+z=a(a> 0). [Answer:e® — %az —a—1] O



1.4 Curves and surfaces

We shall use various geometrical shapes in examples, so agthe equations for them. The main ones
are so-called ‘conic sections’ in two dimensions, and esldhree-dimensional surfaces. Other courses also
discuss more complicated shapes (see e.g. Thomas 10.6 and 10

First we discuss curves in two dimensions. There are three weays to specify a curve:

One way is to give an equation= f(x); a second way is to give an equatigfx,y) = 0: the curve is
then the set of point&x, y) obeying the equation. Given the first form, we can get the rsétdxy defining
g(x,y) =y— f(x), but not necessarily the converse

A third way is theparametric form in terms of two functions of some variabie x = a(t), y = b(t) (see
Thomas 3.5). Sometimes we can tdke x itself. The parametrized form carries extra informatioboat
which direction and how fast we go along the curve agange$. We will see a lot more examples of the
parametrised form in Chapter 2

Using the second way, some standard curves are:

XC+y =a circle, centrg0, 0), radiusa (1.14)
2 2
% + é =1 ellipse, centré0, 0), semi-major axea andb (1.15)
y=ax’+b parabola, symmetric aboxt= 0 (1.16)
oy’ — ki =a? (ck>0) hyperbola, symmetric about= 0 andy = 0 (1.17)

(See Thomas 1.2, 1.5.) The special case of a hyperbolaawth is just a pair of straight lines. These curves
involving only constants and powers upxbandy? are known as theonic sections

To recognize these, first look for the coefficients of fdandy?:
if one is 0, but the corresponding variable appears linedldya parabola;
if they have the same sign it's an ellipse (or as a special aagele), and
if they have opposite sign it's a hyperbola
(assuming the remaining constants allow there to be sonmgg? + y? = —5 has no real points).

What if the equation is quadratic but not one of these stahfitleams? Given
X%+ 6X+y?+8x=0
we can carry out a process called ‘completing the squaretii®@ it as
(Xx+3)%+(y+4)?%=25

which we now recognize as a circle radius 5, ceffitr8, —4): this circle passes through the origin. Similar
methods can be used to recognize the other standard cuthey iéire given relative to origins different from
the ones used in the most standard forms below (cf. Thomas 1.5

We can also recognize the case where the axes have beewiraedf in a similar way. For example,
Xy =b? & (y+x)%2 — (y—x)? = 4b?, so it's a hyperbola where the symmetry axes are atd%shose used in
(1.17) withc = k = 1 and with 4 = a2. In general we have to complete the square on the terms digidra
x andy: for example the rearrangement

X2 4 4xy + 3y2 = (X+ 2y)% — y?

shows the curve? + 4xy + 3y? = 6 is not an ellipse, as you might think from the fact the coffits ofx?
andy? are both positive, but a hyperbola.

2The latter approach is used heavily in Geometry II.



Parametrized curves are also useful, especially when ladileg line integrals along curves later on.
Here are some standard parametrizations for the circipseland hyperbola:

X2 y2 = a? (x,y) = (acos8, asinb) (1.18)
2R

R (x,y) = (acos, bsing) (1.19)
V2 X% =a? (x,y) = (asinh@, acoshd). (1.20)

These work because of the identity (1.6) and its hyperbalimterpart costhx — sinf?x = 1. (See Thomas
10.4 for futher or alternative parametrizations.) We sha# these, especially the first two, later.

1.5 Surfacesin 3-D

[Here we meet material you may not have seen before.]

For surfaces in 3 dimensions, there are similarly three maips to give the equations. One is to give
one coordinate in terms of the other two, ezg= h(x,y). Another is to use a single equativiix, y, z) = 0.
The third is by a parametrization in terms of two variables €(u, v), y(u, v), z(u, v)) (see Thomas 16.6,
and more details in Chapter 2).

We shall again focus on surfaces described by quadratigsyirandz at worst. To work out what the
surface is like, one good way is to consider letting one cimatig be constant, for exampte= d, which
means we are considering a “slice” through the surfaee0 at the plane = d. The intersection of a curved
surface and a plane is generally a 1-D curve, which we shoailahtte to identify from the previous section.
Then we just stack those curves for varyohg

One simple case is
Xty =a?

The equation is the same as for a circle, but as we are now im8rdiions, it implieg can take any value.
In each planeg = d we have a circle. Hence, this is an infinite circular cylindkmg thez-axis. Very often
some bounding values afare given, e.g. & z< 2. Then we have a finite cylinder, the shape of a drinks can.

Example 1.2. What is the surfacé + é =1?

Itis an infinite elliptical cylinder along the axis.

We can also have parabolic and hyperbolic “cylinders”, g¢ih16) and (1.17).

Another simple three-dimensional surface is that sphereof radiusa centred at the origin:

Xy +Z2=2a. (1.21)

Example 1.3. What is the surface? + y2 + 22 = a2, x > 0?

The hemisphere to the right of the plaxe: 0.

We can put together cases where we get one of the standasidfparve listed earlier in planes=d
and different ones in planes= k ory = msay.



For example, we can generalize the ellipse (1.15) to

XXy 7
;‘i‘@‘i—?:l (1.22)
(see Thomas, 12.6). In this case each of the three types-plang gives an ellipse as the curve. The surface
is anellipsoid. This shape, and the ones that follow, are shown in diagré8112.52 in Thomas. (also,
the Wikipedia article on “Quadrics” has some pretty graphic

If instead we had taken

Z X2 2

_xX .y
. + Z (1.23)
we then have an ellipse in each plane d but a parabola in each plane= k ory = m. This is anelliptic
paraboloid. Changing the plus to a minus in this equation gives a hypierparaboloid.

Similarly we can obtain afelliptic) hyperboloid as
2

XXy 7

?‘F?—?:—Fl. (1.24)

Here we have ellipses in planes- d, and hyperbolae in the planes= 0 andy = 0. Moving thez? term over
to the RHS, we see the RHS is positive for ango there is an ellipse for any fixed valuezadnd the surface
has just one piece (we say ‘one sheet’).

However, if instead we had-al on the right, i.e.

Xy 7
2T @b (1.29)
we can rearrange into
XXy 7
Stp-s-l (1.26)

It's now clear that ifZ2/c®> > 1, i.e. z< —c or z > ¢), we again get an ellipse in the plane; but if
—c < z< cthe RHS is negative and there are no solutionxfgr This is a hyperboloid of two sheets.

The elliptic paraboloid and hyperboloid have circular specases whera = b. Note also that we can
swapx, y andz around in these forms so we have different choices of axethéosame shapes.

There is also the special case of the hyperboloid equatia@revine constant on the RHS is zero, i.e.

XXy 7
2T 2
ac b? c

This is a cone through the origin. Taking a plane through tigirosuch asx = 0, we get two straight lines,
while taking planes perpendicular to the axes but not thindbg origin gives ellipses or parabolae. In fact all
the quadratic curves (ellipses, circles, parabolae anditogiae) can be obtained by intersecting the circular
conez’ = x? +y? with planes (not necessarily perpendicular to the axes3:ishwhy they are called conic
sections (see Thomas chapter 10).

0 (1.27)

If we are given a quadratic surface in a different form, we €@est rearrange it into one of the forms
above: rearrange so that all thgy, zterms are on the left, and the constant on the right; if thestaont is not
zero, divide by it to get a-1 on the right; then look at the?, y> andz’ parts: if two or three of these have
negative coefficients, just multiply by1 to make at least two of the coefficientsxdf y?, 2 positive, Then,

If all 3 are positive, it's an ellipsoid (or a sphere).
If two are positive and one negative it's a hyperboloid, arednged to check the constant term
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to see if it's one sheet or two
If one of the threex?,y? or Z% terms is zero, but there is a linear term in the corresponding
variable, it's a paraboloid: the relative sign of the otheo show if it is elliptic or hyperbolic.
If one variable is missing completely, it's a “cylinder” gim by the matching 2-D curve.

As in the case of curves, we can work out what the shape is édjations are not in standard form but
have shifted origins or rotated axes, by completing the sgueor this course, we'll keep it simple though,
so we will only be looking at surfaces which are aligned with toordinate axes.

Now for some parametrized versions (see Thomas 16.6)

Implicit form Parametric form
Cylinder x> +y?=a? (x,¥,Z) = (acosh, asinf,z)  Parameter§,z  (1.28)

Sphere X*+y?’+Z=a’ (asinfcosp, asin@sing, acosh)  Parameters, @ (1.29)
2 2

Ellipsoid % + é + 2= +1 (asinBcosy, bsinBsing, ccosd) Paramete®, ¢ (1.30)
. Xy 7 _ L
Hyperboloid P + 22 1 (acosu, bsinucoshy, csinusinhv) Parameters,v (1.31)

1.6 \ectors

(Note: this is in chapter 12 in Thomas but in Geometry | youdud@st)

Vectors can be introduced as displacements in space, gailgtion vectors To describe a position vector,

we need to specify its direction and its length or magnitudesy how far we go in the given direction).

This is a geometric definition. A vector is different fronsealar, a quantity which has only a magnitude but
no direction.

One can draw a vector as an arrow of the appropriate lengtldiaection. Vectors are usually notated in
print by boldface type, e.@, and in handwriting by under- or over-lining suchas, or a.

Warning: When writing, it is tempting to miss off the under/overlinessave time. This is a bad idea,
because if you confuse what’s a scalar and what’s a vectasun working, you immediately get nonsense.

To define a vector algebraically, i.e. in a formula, we can thgeCartesian coordinates of the point to
which it displaces the origin, e.g.
r=(xYy,2. (1.32)
Note: As you saw in Geometry I, we can write vectors either as rowobnrmn vectors. The column vector
form is useful if you are multiplying by matrices (like roi@mh matrices), but in this course we shall mainly
use the row vector form which is more compact.)

Herex, y andz are called theomponents of r. We may refer tqx, y, z) as the point. From now on we
shall use the notationonly for this vector.

The length of a vectov is denoted byv| or sometimes jus; this is a scalar. The vectorhas length
X2 4 y2 472, by Pythagoras’ theorem in 3 dimensions.

To add vectors andb we simply take the displacement obtained by displacing liiyst and then byb
(the result can be defined as the diagonal of the parallelogrith sidesa andb). In components this says
thatv = (v, v2, v3) andw = (wj, W, w3) have the sum

V4 W= (V1 + W, Vo + Wy, V3+ W3).
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Subtraction can then be defined similarly. The zero ve@tisrthe one with zero magnitude (and no well-
defined direction!).

It is now easy to show this obeys the usual rules of additiod gubtraction§.
The displacement from a point to a pointrp isro —ry.

We can multiply a vector by a scalar (a numbgr)simply by multiplying its magnitude, preserving the
direction. In components, if = (v1,V,,Vv3) then we have

AV = (Avy, AV, Avs).

This operation also obeys very simple and obvious rtil@his multiplication gives us a way to define the
unit vector (the vector of length 1) in the same directiow adenoted by, by V = v/|v| (strictly, we should
write the number first so we would have to write/|v|)v, but in practice it's obvious what we mean).

These rules give us another common way of writing a vectornéle that we can arrive at the same total
displacement by first moving along tlxeaxis, then parallel to the—axis then parallel to the—axis; and we
can express this by defining the unit vectplisandk along the directions of the three axes by

r=x+yj+z.

This way of writing (1.32) has the advantage of making it dedow the components change if we change
our choice of axes: if we rotate our axes to a different system, Z, we will get 3 new unit vectors e.g.,
i’ andk’, and converting vectors between systems looks like a miattyittiplication - more on this later.

Note that all of these statements about position vectorsdim&nsions can very simply be applied in 2
dimensions also, with obvious minor changes.

Although we have motivated vectors by introducing them apldcements, they can represent, or be
interpreted as, many other things: for example, a force)acitg, inputs and outputs in an economic model,
and so on.

A parametric equation of the type
r=p+taq, —o<t< oo (1.33)

defines a line through poiptparallel to directiory. For example =tk, —o <t < « is thez axis.

Using this, we can get the straight line going through tweegipoints ; andr,: the vector fronrq tor,
isro—r1, so the (infinite) line through them is

r=ri+t(ro—ri), infty<t<o (1.34)

If instead we take a range0<t < 1 in the above, this gives us the finite line segment with eoidtp at the
two given points. This will be very useful later omemoriseit.

3This means that for any vectoasb andc,
a+b=b+a (a+b)+c=a+(b+c), JOsuchthad+0=a,

and givena, 3(—a) such thal+ (—a) = 0. These rules are purely abstract and make no referencepiacisnents or three dimensions,
and are part of the general definition of a vector space whsdfivien in Linear Algebra I. Those who have encountered gaif
recognise that they ensure that the space of vectors is ativadgtoup under vector addition.

“More precisely, for any vectomandb, and numbera andpu, we have

A(a+b)=Aa+Ab, (A+p)a=Ara+pa, (Ap)a=A(ua)

and Ja = a. For a general vector space, as defined in Linear Algebra Istalars are elements of a general field but here we shall only
use the real numbef®. However, these rules do apply wharandu are elements of a general field, for instance the complex ewnb
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Example 1.4. Medians of a triangle
Vectors can often be used to derive geometrical resultsa@ngisely, as this example shows.

Let a,b,c be the corners of a triangle. The midpoint of the side coringdt andc will be %(b +c). A
line through this midpoint and is

r=a+t(}b+ic-a), -—w<t<o
which is called the median through Puttingt = % (note: here this choice is a rabbit out of the hat, but we can
find it by writing down a second median and solving for the liséetion point) we get the poir%t(a+ b+c).
Since this point is symmetric ia, b, c, the medians througih andc will also pass through it. Hence the three
medians of a triangle intersect at a single point.

If we write out the components of (1.33), with notatioe- (X, Y, 2), p = (p1, P2, P3), 9= (01, O, 03)
we find
X=p1+tqr y=p2+tde, z=p3+1i0s,

from which we can eliminateto get
X=P1_Y—P2_72—-Ps

)

a1 7] as

giving the two independent linear equations (e.g. yaand z in terms ofx) needed for a line in three-
dimensional space.

We can now write functions of 3-dimensional positibfx, y,z) more compactly as functiorf§r). Equa-
tions of the formf(r) = constant define surfaces, the constant surfacds @ simple example i? = 1,
which is a sphere of unit radius centred at the origin. (Renal notation allows = |r|.)
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Example 1.5. A sphere
The geometrical interpretation of
r—k|=1

as a sphere of unit radius centred @0, 1) is obvious. Equivalent expressions afer y?> + (z— 1) = 1 and
X2 +y?+722-22=0.

Warning: One of the commonest errors made by students is to confusersemd scalars, in particular
to start adding together the components of a vector. Thewégt1, 2) is not the same as the scalar 6. This
may seem obvious now, but the mistake is more easily made wéiag basis vectors like j andk; then it
somehow seems to be easier to make the mistakg 3 2k = 6.

1.7 Scalar and vector products

We have defined vector addition and subtraction, but notipligiation of vectors. This is more complicated
because to obtain another vector we need to define both a tndgrind a direction (and in general, vector
division cannot be defined at all; we can divide a vector byadas@ just by multiplying by YA, but we
cannot divide anything by a vector).

We first define the dot product, or scalar prodyethose result is not a vector but a scalar. For vectors
andw, this is defined by
V.W = |v||w]|cosb, (1.35)

where@ is the angle betweenandw. An alternative definition in terms of the componefis, v», v3) and

(W1, W2, W3) of v andw is
3
V.W = ViWp + VoW2 + VaWg = ZVi Wi.
i=

One can prove that the two definitions are the same by appBjytigagoras’ theorem to a triangle con-
structed as follows. Take sidgsw andv +w. Draw the perpendicular from+ w to the line in directiorv.
It has heightw|sin@ and meets the directionat a distancév| + |w|cosf. Now write out Pythagoras with
the lengths in terms d¥|, |w| and6 and again in terms of components and compare the resultsdéthds
are left as an exercise (if you have trouble, look in the anfintes for MAS114 Geometry | orin A.E. Hirst,
Vectors in 2 or 3 dimensions, Arnold 1995, chapter 3).

We note in particular that two non-zero vectorandw are perpendiculais a right angle) if and only
if vw=0.

Example 1.6.(This example was used in Geometry 1.)
Find cosf where@ is the angle between= (1, 3, —1) andw = (2, 2, 1).

vw = 12+432+(-1).1=7=|v||w|cosh,
VP = 1?7434 (-1)%=11
w2 = 22422412=9 so
cosf = ;:L
V19 3V1i

5In a more abstract setting (such as in Linear Algebra I thiy miso be called the inner product.

13



From either form of the definition we can easily derive vasalgebraic rule§.

A geometrical application of the dot product is in giving thguation of a plane. The plane through a
fixed pointp perpendicular to a fixed vectwiis given by the set of all pointswhich haver — p perpendicular
tov, as is easily seen from a sketch. Since two perpendiculéorselave a dot product of zero, this gives

(r—p)v=0 (1.36)
This easily rearranges tov = p.v and the right-hand side is just a constant for gipen

In components, i = (a, b, ¢) andp.v = d the equation for a plane reads+ by + cz=d. In practice
people often choose a unit vectowhen specifying a plane in this form, so thpah becomes the perpendic-
ular distance of the plane from the origin. Then, the distawfany other point; from that plane is given by
(ri—p).n=ri.n—p.n=ry.n—d (the sign here tells one which side of the planés on).

The vector product: To define a product of two vectors which is a third vector, wedhé define a
direction from two vectors andv. The only way to do this which treats the two vectors equallpitake the
perpendicular to the plane in whichandyv lie. However, this does not fully define a direction, because
need to know which way to go along the perpendicular. Forttie@tonvention is to use the so-called right-
hand rule: hold the fingers of your right hand so they curl @fmom u to v and then take the direction your
thumb points (see Thomas figures 12.27 and 12.28). If you doy@lu may find it helpful to remember that
this is the direction a normal screw travels if you turn yoaresvdriver clockwise. Note that this definition
only works inthree dimensions there is no well-defined vector productirdimensions fon > 3.

The magnitude off x w is defined to bev||w|sin@ (0 as before). Geometrically this is the area of a
parallelogram with sideg andw. Note that for perpendicular vectors this rule implies thet magnitude is
[v||w|. These rules have the consequences that for any vectemndw and any scalak,

VXW = —WXV,

AV)xw = A(vxw)=vx(Aw),
ux (V4+w) = (UxV)+(uxw),
(U+V)XW = UXWHVXW,

andv x w = 0 for non-zerov,w if and only if v andw are parallel or anti-parallel (in particularx v = 0 for
anyv).

Note: it is particularly important to note the sign-change prapéhatv x w = —w x v. This looks
“silly”, but is a consequence of the “handedness” of thrememhsional space, and which way round we
choose to label our three coordinate axes.

From the notation used, the vector product is often callec:toss product.

6The main ones are thatw = w.v and that for any vectors, v andw and any scalah,

v.(Aw) = A(v.w) = (Av).w,
u(v+w) = (uv)+(uw),
(u+v)w = (uw)+(v.w),
v = [v?>0,
vv = 0&v=0.

"You will also find that in some texts it is denoted\ w, but | strongly advise against using this notation as it $e@dconfusion in
more general settings wheve\ w is not a vector. The reason for this misuse is thatw is what's called a two-form, and there is an
operation called the Hodge dual, denoted«bguch that in three dimensioagv Aw) = v x w.
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To get the expressions for the cross product in terms of corapis, we can start by noting that the unit
vectord, j andk are perpendicular to one another (so the vector productyofvem distinct ones among them
has magnitude 1). This means thatj must have length 1 and be perpendicular to both of them, so it i
either+k or —k. Since the usua, y andz axes, in that order, are a right-handed set, it will turn tat t

ixj=-1k, jxk=4, kxi=-+],

and therefore
jxi=—-k, kxj=-i, ixk=-j.

(To remember these , think of the sequeijkigk ...; if the two vectors in the cross-product are in the same
order as in that sequence, the RHS hassgn, while if they are in reverse order there is-aign.)

Alsoi xi=] xj =k xk=0. Using these we easily obtain

(Vai +Voj +V3K) X (Wi +Woj +Wsk) = (VoWwg — VaWo)i + (Vawg — viwg)j + (ViWa — Vowyg )K. (1.37)

This can also be written as the formal determinant

i j k
Vi V2 V3
Wi W2 W3

One geometrical use of the cross product is in forming theiwa of a parallellepiped with sidesv
andw. Thinking of (say)u andv as the base, anfl as the angle betweanx v andw, so that the height is
|w|cosf, we see that

Volume of parallellepipee: (u x v).w (1.38)
(positive ifu,v andw are a right-handed set). This quantity is calleddtedar triple product and it is easy to
show that

U.(VXWw)=V.(Wxu)=w.(UuxV)

(but this is—v.(u x w) etc, remember). We can also show that swapping the dot aisd gives the same
result, i.e.(uxv).w=w.(uxv)=u.(vxw) from above, but note that the brackets also move, i.e. thescro
product must be done first (inside the brackets) otherwisedhult is nonsense. (Some textbooks may omit
the brackets, but this is potentially confusing). Cleamapping the two vectors inside the bracket changes
the sign, and we can show that this is also true for swappigdgvem of the three vectors.

Exercise 1.3. Prove from the definitions that, for al b andc,

ax (bxc)=(ach—(ab)c

This quantity is called theector triple product ; note that the position of the brackets matters here.

a
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1.8 Gradients and directional derivatives

(See Thomas 14.5 [and 16.2])

In Calculus Il you met functions of more than one variable.o3dé that were discussed there wetalar
functions, i.e. functions whose value at a particular point is a numBach a scalar quantity (magnitude but
no direction) that depends on position in space is callechdar field An example would be the temperature
in a room — it has magnitude but not direction (so it is a s¢atard it is (in general) a function of position.

Suppose tha¥ (x,y,z) orV(r) is a scalar field defined in some region. Then we can define adoe
gradient of V, at each point, which we denoi&/, as follows:

ov. ov. oV

DVZWl—Fd—y]-‘t—Ek.

So thex-, y- and z-components of the new vector a#®/ /0x, dV /dy anddV /dz. See Thomas 14.5 if
you need to revise this in more detail. Sometimes instead\bfive write gradV: the two notations are
interchangeable.

Example 1.7. If V(x,y,2) = x?sinz, calculatelV.

In this examplegdV /dx = 2xsinz, 4V /dy = 0 anddV /dz= x? cosz. Hence

[V = 2xsinzi + x?coszk.

Exercise 1.4. Evaluate the gradiefif of the following scalar fields.

@ f=x+y+z
(b) f =yx®+y3 —y+2¢%z

(c) f =ar, whereais a constant vector.
O
Now [V tells us howv changes if we move from one point to a nearby point. Suppossaveat a point

r = (x,Y,2), and then move a small distande= (dx,dy, dz) to the new point +dr = (x+ dx,y+ dy, z+ dz):
we will get a small change ¥, given by

v = V(x+dx,y+dy,z+dz) —V(xy,2)

d—vdx+0—vd +6—V
ox ay y 0z

dz

Here the second line uses the Taylor series in more than oiadie and discards terms in second and higher
derivatives sincelr is small. But(dx,dy,dz) = dr, and so the right-hand side is jusV.dr. Hence for a small
changdlr, the change iV is

dv =0Vv.dr (1.39)

Note: to use this, youmust evaluatelV at the point concerned.

In our original definition of grad, it was implicitly assumeldat we were working in terms of some
specified Cartesian coordinate systegy,z). Equation (1.39) is important, because we can use it as a more
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fundamental definition of grad, which will enable us to widtgwn OV in more general coordinate systems.
We shall return to this point later, in Chapter 5

Next, consider a surface
V(r) = constant

and suppose that the pointis on that surface. Ifdis a displacemerdn this surfaceyV (r1+dr) =V (ry).

Thus &/ = OV|r,.dr = 0. Since this applies for every small displacemenirdthe surface[IV|;, must be
perpendicular to the surface iat. This gives us a way of finding a normal to a surface when thiasetis
specified by a single equation: the unit normatill be 00V /|0V | evaluated at the point concerned.

Suppose we now want a hormal lineMo= constant, or a tangent plane (see Thomas 14.6). As we know
from (1.33) and (1.36), a line through poeatn directionq can be written in parametric form as

r=a+tq, —00 <t < oo
while the plane through perpendicular ta is
(r—a).q=0.

so all we have to do is insert valuesaéndq in these formulae. For the tangent plane and normal line to a
surface at a given poimt, this gives

(r—p).0vV[p=0 and r=p+tOV|p.

It is sometimes convenient to eliminate the parameter the normal line, which we can do by taking
the cross product withlV |-
(r—p)xOV|p=0.

Note that the formgr —p).n =0 and(r —p) x n = 0, using the unit normai, would give the same plane or
line (though inr = a+tn such a change alters the values &r given points) so we need not calcul&id/ |

to get the tangent plane or normal line.

Repeated Noteito use this, youmust evaluatelV at the point concerned.

Exercise 1.5. Find equations for the (i) tangent plane and (ii) normal Ei¢he point?y on each of the
surfaces:

(@)X +3yz+4xy=27, Py=(3,12).
(b) y?z+x%y =7, P=(21,3).

[Answers: (a) 18+ 18y+3z=54, r = (3+10t)i + (14 18&)j + (2+ 3t)k
(b) 4x+10y+z=21,r = (24+4t)i + (1+10)j + (3+1)k] O

Suppose now that we want to calculate the rate of changé¢rgfin a particular direction specified by the
unit vectort. Lets be the distance travelled in the directiontpthen d¢ =tds. So &/ = OV.tds. Hence we
can conclude that the rate of changé/ah the direction ot is

ﬂ =[OV.t =t.0V.
ds

t.0V is called thedirectional derivative. Now
OV.t =|0OV||t| cosf = |OV| cosb,

where@ is the angle between the vectal¥ andt. This is maximized when cds=1, i.e. whend =0. Thus
V changes most rapidly in the direction@¥/, and|0V| is this most rapid rate of change. Itis this property,
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in the two-dimensional case, that gave rise to the namegmngdiecausé1V| is the gradient of the surface
given byz= f(x, y) in that case. Correspondingly the maximum decrease is Wisempposite td V.

Example 1.8. Find the directions in which the functioh(x,y,z) = (x/y) — yz increases and decreases
most rapidly at the point P4,1,1).

We can describe the directions in whi¢hincreases and decreases most rapidly by specifying the unit
vectors in those directions. Now

1 X
Of ==i— —+z)'—k: 1,-5-1) atP
y <W j—yk=( )

The rate of change df in the direction of unit vector is Of.t. This has its maximum whetnis in the same
direction ad1f; so the directiort in which f increases most rapidly is

of 1
ofl ~ vz

and the actual rate ig27. The rate oflecrease of f is greatest, at-+/27, whert is in theopposite direction,
i.e.

(1, -5, —1).

-1
75@,5_4)

Exercise 1.6. Find the directional derivative ob at the point(1, 2, 3) in the direction of the vector
(1,1, 1) where
X2y 7

o="4+L 2
37927

We can write[] on its own as )

.d .0
D_Iﬁx+10y+kﬁz
and work with it like a vector field, although it is in fact novactor field (since we cannot say what numerical
value its components have at a particular point); strigigakingO is avector differential operator. The
name of the symball is ‘nabla’ but often in speech we say ‘del’. It is easy to sew o take a two-
dimensional version afl. We will return tod in Chapter 3, where we shall see how th@perator can also
be used to differentiate vectors.
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