
Chapter 6

Fourier series

Last updated: 01 Dec 2010.
Syllabus section:
6. Fourier series: full, half and arbitrary range series. Parseval’s Theorem.

Fourier series provide a way to do various calculations with, and to analyse the behaviour of, functions
which areperiodic: this means that they repeat the same values in a regular pattern, or are defined in a finite
range. Specifically, a function which isperiodic with periodL will obey an equation

f (x+L) = f (x) for all x

and to start with, we will assumeL = 2π also for convenience. We already know that cosnxand sinnx for any
integern have period 2π . (So, of course, do the other trigonometric functions such as tanx, but these have the
disadvantage of becoming unbounded at certain values, e.g.tanx is unbounded atx = π/2).

The basic principle of Fourier series is to express our periodic function f (x) as an infinite sum of sine and
cosine functions,

f (x) =
∞

∑
0

(ancosnx+bnsinnx)

for a periodic and piecewise differentiablef (x) (in fact, for any function defined on a range of length 2π).
We will slightly modify this way of writing the series soon.

Such a series splitsf into pieces of different “frequency”: geometrically, eachof the sinnx andcosnx
terms has exactlyn positive and negative“wiggles” over the range 0≤ x ≤ 2π , and thean,bn are constants
telling us how muchf varies at each different frequency.

This technique (and its generalisation to Fourier transforms) has a large number of practical applications,
including: resolution of sound waves into their different frequencies, e.g. in MP3 players; telecommunica-
tions and Wi-Fi; computer graphics and image processing; astronomy and optics; climate variation; water
waves; periodic behaviour of financial measures, etc.
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6.1 Full range Fourier series

As above, the idea is that we have a given functionf (x) defined for a range of values ofx of length 2π , say
−π ≤ x≤ π ; now we approximate this function as an infinite sum of trigonometric functions, as

f (x) ≈ S(x) ≡ 1
2a0 +

∞

∑
n=1

ancosnx+
∞

∑
n=1

bnsinnx. (6.1)

wherean,bn are an infinite series of constants to be determined. The right-hand side of this,S(x) for short, is
called theFourier series for f (x), and the set of coefficientsan,bn are called theFourier coefficients. Here
the 1

2a0 is really a cos0x= 1 constant term, and the12 is put in for convenience as we see below. (There is no
point in including ab0 term since sin0x = 0).

Clearly, to make progress we have to actually calculate thean,bn; this looks very hard since we there are
infinitely many of them, but is actually straightforward using theorthogonality properties of sinmx,cosnx:
the key results we need are, for any two non-negative integersm andn,

∫ π

−π
cosmxsinnx dx = 0 (6.2)

∫ π

−π
cosmxcosnx dx =

{

0 if m 6= n
π if m= n 6= 0
2π if m= n = 0

∫ π

−π
sinmxsinnx dx =

{

0 if m 6= n
π if m= n 6= 0
0 if m= n = 0

All of the above are simple to prove using the trigonometric identities from Chapter 1, e.g. cosA cosB =
1
2[cos(A+B)+cos(A−B)] and similar. Using these, we can find the Fourier coefficientsgiven f (x): suppose
we multiply Eq. 6.1 by cosmx for somefixedintegerm, then integrate from−π to π , then we have

∫ π

−π
f (x) cosmx dx=

∫ π

−π

[

1
2a0cosmx+

∞

∑
1

ancosnxcosmx +
∞

∑
1

bnsinnxcosmx

]

dx

Assuming the sums converge, we can swap the integral sign andthe summations above, giving

∫ π

−π
f (x) cosmx dx= 1

2a0

[

∫ π

−π
cosmx dx

]

+
∞

∑
n=1

an

[

∫ π

−π
cosnxcosmx dx

]

+
∞

∑
n=1

bn

[

∫ π

−π
sinnxcosmx dx

]

(6.3)
Now supposem> 0, and look at the integrals in square-brackets above: the first one is zero. From Eq. 6.2,
the integrals in the middle term are all zero, except for exactly one case whenn = m when the integral isπ .
The integrals in the right-hand term are all zeros. Therefore, the RHS of the above is simply one non-zero
term= amπ ; so rearranging we get

am =
1
π

∫ π

−π
f (x)cosmxdx .

Likewise, if instead we multiplied Eq. 6.1 by sinmxand integrated, we get

∫ π

−π
f (x) sinmx dx= 1

2a0

[

∫ π

−π
sinmx dx

]

+
∞

∑
n=1

an

[

∫ π

−π
cosnxsinmx dx

]

+
∞

∑
n=1

bn

[

∫ π

−π
sinnxsinmx dx

]

Again all the square-brackets on the RHS are zero, except forone case in the rightmost bracket withn = m
which givesπ ; so the RHS isbmπ and we rearrange to

bm =
1
π

∫ π

−π
f (x)sinmxdx .
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Finally, we need the special case ofm= 0: going back to Eq. 6.3 the LHS contains cosmx= cos0x = 1;
now thea0 term on the RHS is the only one which gives a non-zero integral, because both the infinite sums
haven≥ 1 6= m and all the integrals are zero. Then the RHS above becomes1

2a0(2π), so the above equation
for am is still correct form= 0; note that the funny-looking12 in the original definition Eq. 6.1 was put in to
make that work. (Some books may not have the1

2 in Eq. 6.1, but then we need to add a1
2 in the equation

defininga0 instead). Remember sin0x = 0 so there is nob0 term to deal with.

The equations above were derived by choosing onefixed integerm and showing that all terms with
n 6= m disappeared: however the argument is correct for any value of m, so the above equations giveall the
coefficientsam,bm. (The choice of letterm above is arbitrary, but it had to be different to then which runs
from 0 to∞ ). Finally, sincem is a dummy label in the above andn has now disappeared, we can change the
letterm back ton and we get

an =
1
π

∫ π

−π
f (x)cosnxdx (n≥ 0) (6.4)

bn =
1
π

∫ π

−π
f (x)sinnxdx (n≥ 1)

Therefore,to find the Fourier series S(x) for a given f (x), we simply have to evaluate the definite
integrals Eq. 6.4 (using a suitable method such as integration by parts) to getan,bn for all n; then substitute
those coefficients back into Eq. 6.1.

Next we take an example of actually evaluating thean,bn for a given f (x).

Example 6.1. Find the Fourier series for

f (x) =
{

0 if −π < x < 0
x if 0 < x < π .

Using the formulae above,

an =
1
π

∫ π

−π
f (x)cosnxdx =

1
π

∫ π

0
xcosnxdx

bn =
1
π

∫ π

−π
f (x)sinnxdx =

1
π

∫ π

0
xsinnxdx

(the lower limits become 0 because we were givenf (x) = 0 in [−π , 0], so that range contributes zero to the
integrals). Evaluating the above, using integration by parts, we find that:

an =
1
π

([

xsinnx
n

]π

0
−
∫ π

0

sinnx
n

dx

)

=
1
π

[cosnx
n2

]π

0

=
1

πn2 (cosnπ −1)

=
1

πn2 ((−1)n−1)

and this givesan = −2/πn2 whenn is odd, oran = 0 for evenn > 0.

Note that forn = 0 the procedure above contains 0/0 so is ill-defined: as is common, we need to treat
n = 0 as a special case, with cos0x = 1:

a0 =
1
π

∫ π

0
x1dx =

1
π

[

x2

2

]π

0
=

π
2

.
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Finally we need thebn’s, which are

bn =
1
π

([

−xcosnx
n

]π

0
+

∫ π

0

cosnx
n

dx

)

=
1
π

(

−π cosnπ
n

+

[

sinnx
n2

]π

0

)

=
1

πn
(−π cosnπ)+0=

−(−1)n

n

=
(−1)n+1

n

(and there is nob0 term, so this givesbn for all positiven).

Putting all thesean,bn back into the general form Eq. 6.1, the Fourier series we are asked for is

S(x) =
π
4
−

∞

∑
k=0

2
π(2k+1)2 cos(2k+1)x+

∞

∑
n=1

(−1)n+1

n
sinnx .

where we have dealt with the odd/evenn for an by replacingn with 2k+1 which must be odd, and summing
overk = 0 to ∞.

Although this general method always works (as long as we can evaluate the integrals), we do not need to
do it for functions we can put into the required form by other means, as in the next example.

Example 6.2. Find the Fourier series for sin4x.

Here we use the double angle formula: sin4x = 1
4(1− cos2x)2 = 1

4(1− 2cos2x+ cos22x) = 1
4(1−

2cos2x+ 1
2[1+cos4x])

so sin4x = 3
8 −

1
2 cos2x+ 1

8 cos4x.
This already looks like a special case of Eq. 6.1, so we just write a0 = 3

4 (remembering the half),a2 = − 1
2,

a4 = 1
8; and all otheran and allbn are zero.

(Note: We could evaluate the integrals and get the same answer, but we don’t need to do that here since
we can see the result by inspection).

We note that the seriesS(x) is periodic, i.e. if we take the same series for anyx, rather than staying in the
range−π ≤ x≤ π , S(x) will obey S(x+2π) = S(x). So this can also be used for functions defined on a range
longer than 2π if those functions are periodic with period 2π . Another way to look at this is that if we know
the function on the range[−π , π ] we can define it for allx by insisting that it be periodic; graphically, this is
equivalent to just “copying” the function infinitely many times for intervals 2π , like wallpaper.

We note that the range ofx could equally well be[α,α +2π ] for anyα, since all the quantities involved
are periodic so this will give integrals over exactly the same range of values off . Noteα = 0 is often used,
so the range ofx becomes[0,2π ].

Exercise 6.1. Find the Fourier series off (x) defined byf (x) = 0 in −π < x < 0 and f (x) = cosx in
0≤ x < π .
The answer should be

1
2 cosx+

∞

∑
k=1

4k
π(4k2−1)

sin2kx .

2

Going back to example 6.1, and evaluating both sides atx = π/2: we need to remember that the cosine
of an odd multiple ofπ/2 is zero, the sine of an even multiple ofπ/2 is zero, and the sine of(2k+1)π/2 is
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(−1)k−1, from chapter 1. So we get

π
2

=
π
4

+
∞

∑
k=0

(−1)k

2k+1

⇒ π
4

= 1− 1
3

+
1
5
− 1

7
+ . . .

A number of results of this sort, giving sums of numerical series, can be obtained by direct evaluation of
equation (6.1) at some particularx. The only tricky point in using this is to guess whichx to evaluate: usually
one ofπ , π/2 or π/4 is what is needed, to make the sine and cosine functions givesimple results such as 0
or (−1)n etc.

Warning: so far, we have not actually proved that the infinite sumS(x) on the right-hand side of 6.1
actually converges, or has limitf (x). Strictly, what we have shown is that IF there exists an infinite sumS(x)
which does converge tof (x) over−π ≤ x≤ π , then the coefficients must be given by Eq. 6.4.

We discuss the question of convergence and the limit in the next section.

6.2 Completeness and convergence of Fourier series

We now give answers to two questions: can every function withperiod 2π be written this way, and does the
seriesS(x) in 6.1 with coefficients 6.4 always converge at allx ? These ideas are referred to as completeness
and convergence. To specify more fully, consider the sum of the firstN terms withx fixed: this sum definitely
exists since all thean,bn are bounded iff (x) is bounded, and we get a sum of a finiteN bounded terms).
Then letN → ∞: if the limit exists, thenS(x) is said to converge atx. Completeness amounts to asking if this
limit S(x) equals the value of the original functionf (x). The proof of the relevant properties is not part of
this course, but the result is. As usual, the conditions in itare like small print in contracts – ignorable most of
the time, but important when things go wrong.

Theorem 6.1 (Fourier’s theorem or Dirichlet’s theorem) If f(x) is periodic with period2π for all x, and f(x)
is piecewise smooth in(−π , π), then the Fourier series S(x) with coefficients an and bn (defined as above)
converges to12( f (x+)+ f (x−)) at every point.

Here “piecewise smooth” means sufficiently differentiableat all except isolated points, andf (x+) means
the limit of f (x+ δ ) asδ (positive) tends to zero, which is called the upper limit or right limit of f (x) at x.
Similarly f (x−) is the limit of f (x−δ ) asδ tends to zero, called the lower limit or left limit). At anyx where
f (x) is continuous, we havef (x+) = f (x−) = f (x), soS(x) = 1

2[ f (x)+ f (x)] = f (x) so the Fourier series
does converge to exactlyf (x). At points wheref (x) has a discontinuity,f (x+) and f (x−) are not equal, and
thenS(x) = 1

2( f (x+)+ f (x−)) gives the average value off (x) on either side of the discontinuity: but this
may not be the value off (x) itself at the point.

Typically, we will find that asn→ ∞, the coefficientsan andbn tend to zero like 1/n or faster.

Example 6.3. Taking the function and series of Example 6.1, Fourier’s theorem tells us that atx = π
the series converges to12( f (π+)+ f (π−)) = 1

2(0+π) = 1
2π , using f (π+) = f ((−π)+) by periodicity. The

series then gives
π
2

=
π
4

+
∞

∑
k=0

2
π(2k+1)2 ,
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since sinnπ = 0 and cos(2k+1)π = −1. Subtractingπ/4 we have

π
4

=
∞

∑
k=1

2
π(2k+1)2 =

2
π

(1+
1
32 +

1
52 . . .), therefore

π2

8
= 1+

1
32 +

1
52 + . . . .

As a nice corollary of the above, we can get the infinite sum forall integers (not just odd ones) as follows:
define

T ≡ 1+
1
22 +

1
32 + . . . ,

then dividing by 4 gives
1
4

T =
1
22 +

1
42 +

1
62 + . . .

so subtracting,
3
4

T = 1+
1
32 +

1
52 + . . .

which is the series above. Therefore

T =
4
3

π2

8
=

π2

6

Note: There is a strange detail. Fourier’s theorem tells us what happens in the limit of the infinite series.
But if we take any finite number of terms we obviously cannot match a discontinuity exactly, since the finite
series must give a continuous function. It turns out that anyfinite sum overshoots the function on either
side of the discontinuity: this curious effect is called Gibbs’s phenomenon— adding more terms does not
reduce the overshoot, it just moves the overshoot closer to the discontinuity. (In the limit of the infinite
sum, the overshoot gets “infinitesimally close” to the discontinuity, so for anyx a finite distance from the
discontinuity, this does not matter).

Example 6.4. The square wave.

Consider the “square wave” function defined by

f (x) =
{

0 if x < 0
1 if x > 0

(6.5)

in the domain[−π ,π ] and periodic with period 2π . This gives

a0 = 1 an>0 = 0 bn =
1−cosnπ

nπ

sobn is 0 for evenn or 2/(nπ) for oddn. Therefore,

f (x) = 1
2 +2 ∑

n odd

sinnx
nπ

. (6.6)

Figure 6.1 shows the square wave and its approximations by its Fourier series (up ton = 1 andn = 5).
Several things are noticeable:

(i) even a square wave, which looks very unlike sines and cosines, can be approximated by them, to any
desired accuracy;

(ii) although we only considered the domain[−π ,π ] the Fourier series automatically extends the domain to
all realx by generating a periodic answer;
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x

f(x)

Figure 6.1: Square wave (as in equation (6.5) but with the vertical direction stretched for better visibility) and
Fourier partial sums: two terms and four terms.

(iii) at discontinuities, the Fourier series gives the meanvalue of f (x) on either side of the discontinuity.

(iv) close to discontinuities the Fourier series overshoots.

Another result telling us in what sense we have a good approximation isParseval’s theorem:

Theorem 6.2 (Parseval’s Theorem) If f(x) has a Fourier series defined as in Section 6.1, then

∫ π

−π
f (x)2 dx = 1

2πa2
0+ π

∞

∑
n=1

(a2
n +b2

n).

For a formal proof one has to deal with convergence of the infinite sum, but if we assume convergence
we can write

f (x)2 =

(

1
2a0 +

∞

∑
1

ancosnx+
∞

∑
1

bnsinnx

)(

1
2a0 +

∞

∑
1

amcosmx+
∞

∑
1

bmsinmx

)

then we can expand this out into a double sum

f (x)2 =
1
4

a2
0 + 1

2a0

(

∞

∑
1

amcosmx+
∞

∑
1

bmsinmx

)

+ 1
2a0

(

∞

∑
1

ancosnx+
∞

∑
1

bnsinnx

)

+
∞

∑
m=1

∞

∑
n=1

(anamcosnxcosmx+anbmcosnxsinmx+bnamsinnxcosmx+bnbmsinnxsinmx)

(Note: in the above,n andmcan be any letters, but we have to use twodifferent letters since we’re summing
over both of them independently).

Now as before we integrate the above fromx = −π to π , and again we swap the sum and integral signs:
the first term is a constant giving integral(1/4)a2

02π ; the next two terms contain only single sin’s and cos’s
which all integrate to zero. Then in the double sum, we look upresults from Eq.6.2 again, and all the terms
with m 6= n integrate to zero: so we can turn the double summation into a single summation withm= n (think
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of summing over an infinite chessboard where all off-diagonal squares contain zeros). Then, the sinmxcosnx
terms also integrate to zero: finally the cosmxcosnx terms and sinmxsinnx terms (withm= n) integrate to
π , so the overall result is

∫ π

−π
f (x)2 dx=

1
4

a2
0(2π)+0+0+

∞

∑
n=1

(a2
nπ +0+0+b2

nπ) ;

this is Parseval’s theorem as above.

In a very similar way, one can show that for two functionsf (x) and g(x), with f (x) having Fourier
coefficientsan, bn andg(x) having coefficientsAn, Bn, we obtain

∫ π

−π
f (x)g(x) dx = 1

2πa0A0 + π
∞

∑
n=1

(anAn +bnBn) .

Example 6.5. Go back to the Fourier series for the square wave, Eq. 6.5 above. Putting this into both
sides of Parseval’s theorem, we have

∫ π

0
1dx =

π
2

+
4π
π2

∞

∑
k=1

1
(2k+1)2

π =
π
2

+
4
π

(1+
1
32 +

1
52 + . . .)

On rearranging we get
π2

8
=

∞

∑
k=0

1
(2k+1)2 = 1+

1
32 +

1
52 + . . .

which we had already derived in another way in Example 6.3.

Parseval’s theorem is important in practical applications, for example telling us numerically “how good”
is an approximation tof (x) given by taking only a finite number of terms in the Fourier series (as we have
to do in real-world evaluation on a computer). We proceed as follows: defineSN(x) to be the sum up to and
includingn = N of the Fourier series forf (x), thenS(x) is the infinite sum (the limit ofSN(x) asN tends to
infinity). If we defineEN(x) = f (x)−SN(x), this is the “residual error” if we keep only the firstN terms of
the series.

It is easy to see that the Fourier series forEN(x) has coefficients zero for 1≤ n≤ N, andan, bn for n > N,
so applying Parseval’s theorem toEN(x),

∫ π

−π
(EN(x))2 dx= π

∞

∑
n=N+1

(a2
n +b2

n)

If we divide the above equation by the range 2π , the left-hand side becomes the mean value ofE2
N over the

range, which is the “mean square error” in our approximationSN(x). So, if the right-hand side is small, i.e.
the sum ofa2

n + b2
n is converging rapidly to its limit, we know thatSN(x) is a good approximation of our

original function f (x).

6.3 Odd and even functions; Half range Fourier series

We recall the definitions of an “even” and “odd” function:
f (x) is even⇔ f (x) = f (−x) for all x.
f (x) is odd⇔ f (x) = − f (−x) for all x.
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Any function f (x) can always be written as

f (x) = 1
2[ f (x)+ f (−x)]+ 1

2[ f (x)− f (−x)] ,

in which the first bracket on the right is an even function and the second bracket is an odd function, by
construction.

Since sinkx is odd and coskx is even, we might suspect that for even functionsf (x) only cosine terms
appear in the Fourier series (allbn = 0), while similarly for odd functions only sine terms appearand all
an = 0. This is correct, and we can easily check this, e.g.

πan =
∫ π

−π
f (x)cosnxdx

=

∫ 0

−π
f (x)cosnxdx+

∫ π

0
f (x)cosnxdx

=

∫ 0

u=π
f (−u)cos(−nu) (−1)du+

∫ π

0
f (x)cosnxdx

where we have substitutedu = −x in the first half, so its range becomesπ to 0. Now this is

= −
∫ π

0
f (−u)cosnu(−1)du+

∫ π

0
f (x)cosnxdx

=

∫ π

0
( f (−x)+ f (x))cosnxdx

where we have replacedu by +xsince it’s a dummy variable. The above is clearly 0 iff (x) is an odd function.

Similarly

πbn =

∫ π

0
( f (x)− f (−x))sinnxdx.

To summarise the above, iff (x) is an even function, we have

an =
2
π

∫ π

0
f (x)cosnxdx , bn = 0 for all n .

(where by symmetry we can halve the range of integration from0 toπ , and multiply by 2 ). And iff (x) is an
odd function , allan = 0 , and

bn =
2
π

∫ π

0
f (x)sinnxdx .

We can use this property to make a Fourier series for ahalf range usingonly sine or only cosine terms,
as follows. Suppose we are given a functionφ(x) defined on[0, π ] (a “half range”), then we can define two
new functions on the range[−π ,π ]: we construct an even functionf (x) such thatf (x) = φ(x) in (0, π) and
f (x) = φ(−x) if −π < x < 0. Likewise we define an odd functiong(x) such thatg(x) = φ(x) for 0≤ x < π ,
andg(x) = −φ(−x) if −π < x < 0.

Note thatboth f (x) andg(x) are equal toφ(x) on the range(0,π), but they have opposite signs on the
range(−π ,0). (Note also thath(x) = 1

2( f (x)+g(x)) is equal toφ(x) on (0,π) and zero on(−π ,0)).

Inserting thesef (x) andg(x) into Eq. 6.1, our even functionf (x) gives a Fourier series with

an =
2
π

∫ π

0
φ(x)cosnxdx , bn = 0,
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and the odd functiong(x) gives a Fourier series with

an = 0 , bn =
2
π

∫ π

0
φ(x)sinnxdx .

These are called respectively thehalf-range cosine seriesandhalf-range sine seriesfor φ(x) ; both of those
series are equal toφ(x) on the range(0,π), but they have opposite signs on the range(−π ,0).

(Also it is clear that if you take the average of the above two series, you get the series forh(x) above,
which is equal toφ(x) on (0,π) and zero on(−π ,0)).

Example 6.6. f (x) is such thatf (x) = f (x+2π) and f (x) =− f (−x), and on 0≤ x≤ π , f (x) = x(π−x).
Find its Fourier series, and prove that

1− 1
33 +

1
53 + . . . =

π3

32

The givenf (x) has period 2π and is odd, so we know the series contains only sine terms, and

bn =
2
π

∫ π

0
x(π −x)sinnxdx

=
2
π

{

[

−x(π −x)
cosnx

n

]π

0
+

∫ π

0
(π −2x)

cosnx
n

dx

}

=
2
π

{[

(π −2x)
sinnx

n2

]π

0
+2

∫ π

0

sinnx
n2 dx

}

=
4
π

[

−cosnx
n3

]π

0

=







0 for n = 2k,
8

π(2k+1)3 for n = 2k+1.

Thus

f (x) =
8
π

∞

∑
k=0

sin(2k+1)x
(2k+1)3 . (6.7)

To get the series requested, we try evaluating (6.7) at somex such that sin(2k+1)x= (−1)k. This occurs
atx = π/2. Evaluating both sides there gives

f (π/2) =
π2

4
=

8
π

∞

∑
k=0

(−1)k

(2k+1)3

which on rearranging gives the required result.

6.4 Arbitrary range Fourier series

Here we extend the Fourier series to the case when the range ofour function is not−π ≤ x≤ π . If we have
f (x) defined in a range−L ≤ x≤ L, instead of−π < x≤ π , then we can define a new variabley≡ πx/L (a
rescaled version ofx), so that−π ≤ y≤ π and write f as a Fourier series iny.

f (x) = 1
2a0 +

∞

∑
n=1

(ancosny+bnsinny)

= 1
2a0 +

∞

∑
n=1

(ancos(
nπx
L

)+bnsin(
nπx
L

)).
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where

an =
1
π

∫ y=π

y=−π
f (

Ly
π

)cos
nπx
L

d(
πx
L

),

=
1
L

∫ L

−L
f (x)cos

nπx
L

dx.

and similarly

bn =
1
L

∫ L

−L
f (x)sin

nπx
L

dx.

Here we have just “rescaled”: observe that asx goes from−L to L, the quantitynπx/L goes from -πn to
+πn so there are again an integern “wiggles” in each cos/sin term.

For functions which are a simple stretch/squash of another function whose Fourier series we have already
worked out, we can rescale variables.

Example 6.7. Find the Fourier series for the functiong(x) of period 2c such that

g(x) =
{

0 if −c< x < 0
x if 0 < x < c.

Using the result of example 6.1, replacingx by y, we have

f (y) =
π
4
−

∞

∑
k=1

2
π(2k+1)2 cos(2k+1)y+

∞

∑
1

(−1)n+1

n
sinny −π < y≤ π

⇒ f (
πx
c

) =
π
4
−

∞

∑
k=1

2
π(2k+1)2 cos

(2k+1)πx
c

+
∞

∑
1

(−1)n+1

n
sin

nπx
c

−c≤ x≤ c

But we havef (πx/c) = 0 for−c< x< 0, orπx/c for 0 < x≤ c, so f (πx/c) = (π/c)g(x) for all −c< x≤ c.
So we just multiply the series above byc/π , and get

⇒ g(x) =
c
4
−

∞

∑
k=1

2c
π2(2k+1)2 cos

(2k+1)πx
c

+
∞

∑
1

(−1)n+1c
πn

sin
nπx

c

Appendix

This section will not be lectured and is not for examination

The following shows the kind of application Fourier himselfhad in mind and gives an example of some
methods in partial differential equations which we will meet in another context in the next chapter.

Example 6.8. In the propagation of heat in a solid in one dimension, the temperatureθ obeys the
equation

k
∂ 2θ
∂x2 =

∂θ
∂ t

.

This is the simplest case of thediffusion equation.

We introduce here a new idea which will run through the rest ofthe course. This isseparation of
variables: we can see that if we look for a solution in the formX(x)T(t) we will find

kT
d2X
dx2 = X

dT
dt

⇒ k
X

d2X
dx2 =

1
T

dT
dt

.
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Here the left side depends only onx and the right side only ont: hence the two sides must both equal the
same constant (only a constant can depend only onx, and only ont, at the same time). We then have two
equations

k
d2X

X dx2 = λ , λ =
dT
T dt

,

to solve, whereλ is our unknown constant. When we have solved these, we multiply the answers together to
solve the original equation. In general we assume (and indeed usually we can prove) that the full solution is
a (possibly infinite) sum of solutions of the separable type.

For Fourier’s problem we proceed as follows:
At the earth’s surface, the temperatureθ is assumed to vary periodically over the year (for simplicity) so it
has a Fourier series in timet with period 1 year. We definex to be the depth into the earth. Then at the surface
x = 0 we can write

θ = 1
2a0 + ∑

n=1

(ancos
2nπt

T
+bnsin

2nπt
T

)

with T = 365/2 days.

Now at otherx we letan andbn depend onx and put these into the differential equation: this means we are
writing the whole solution as a sum of separable solutions inwhich thet dependence gives a Fourier series
(with different coefficients at eachx). Plugging this into the original equation and equating coefficients in the
Fourier series we get

k
∂ 2an

∂x2 cos
2nπt

T
=

2nπ
T

bncos
2nπt

T
.

k
∂ 2bn

∂x2 sin
2nπt

T
= −2nπ

T
ansin

2nπt
T

.

These can be written as a single complex equation

∂ 2(bn + ian)

∂x2 =
2nπ i

T
(bn + ian).

This equation is easy to solve as it is a linear equation with constant coefficients. [For those who have done
the Differential Equations course, the auxiliary equationhas roots

±
√

nπ
kT

(1+ i)

and that gives the solutions. We need the solution with a negative real part (temperature variation decreases
as we go into the earth).] The solution is

bn + ian = cexp

(

−
√

nπ
kT

(1+ i)x

)

,

for some constantc. This means we have a solution which varies sinusoidally with time, but the amplitude
of variation decreases by a factore in a distance

√

kT/nπ. Some realistic figures arek = 2.10−3 cm2/s,
T = 365.24.3600/2 secs, giving 1/λ ≡

√

kT/π = 177 cm for annual variation and roughly 1/19 of this for
daily variation. The amplitude of the annual variation halves in a distancex such thatλx = ln2, about 123
cm. So in 5 metres the variation of temperature reduces by a factor 1/16 (it also turns out that at that depth
the variation is out of phase with the surface, i.e. coolest in mid-summer).
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6.5 Fourier Transforms

This section is not examinable, but is included since it may be useful for later courses.

To conclude this chapter, it is worth a quick look at the extension of Fourier series to Fourier Transforms.
The principle remains the same, i.e. expressing a general function as a sum of trigonometric functions of
different frequency.

There are two main steps to get from Fourier series to Fouriertransforms: firstly, we introduce complex
numbers and use Euler’s formula

einx = cosnx+ i sinnx .

Then we change the definition of the Fourier series to

f (x) =
∞

∑
n=−∞

cneinx

and the coefficientscn become

cn =
1

2π

∫ π

−π
f (x)e−inx dx

What we have done here is just make the coefficientscn complex, extended the infinite sum to negative
integersn, and changed the prefactor from 1/π to 1/(2π) to compensate for doubling the number of terms
in the sum. (Then = 0 case does not have positive and negative terms so the half inEq. 6.1 gets absorbed in
the above). In this case we can easily see, taking real and imaginary parts of the above, thatcn = 1

2(an− ibn)
where thean,bn are the same as previous sections; assumingf (x) is real-valued, then it is clear from the
definition thatc−n = 1

2(an + ibn) = c̄n, the complex conjugate.

This has not really done anything very new, it just turns two real formulae foran, bn into one complex
formula forcn. The real parts of thecn’s are the cosine terms and the imaginary parts give the sine terms; if
we extract the two terms for+n and−n in the series forf (x) we have

cneinx +c−ne
−inx = 1

2(an− ibn)(cosnx+ i sinnx)+ 1
2(an + ibn)(cosnx− i sinnx) (6.8)

= (ancosnx+bnsinnx) , (6.9)

so the imaginary parts cancel, and this agrees with what we had before.

This also allows us to extend the formula to complex-valuedf (x), in which case the termscn + c̄−n are
no longer real, and their imaginary parts give the complex part of f (x) .

To extend to Fourier transforms, we generalise the above to the arbitrary-range series, i.e. letf (x) be
periodic with period L, i.e.

f (x) =
∞

∑
−∞

cne−2π inx/L

cn =
1
L

∫ L/2

−L/2
f (x)e2π inx/L dx

Now if we write δ = 2π/L andωn = nδ this becomes

f (x) =
∞

∑
−∞

cneiωx

cn =
δ
2π

∫ L/2

−L/2
f (x)eiωx dx
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and if we let the rangeL tend to infinity, letdn = cn/δ , let δ tend to zero, we can convert the infinite discrete
series of coefficientsdn into a continuous functionF (ω), and (skipping some details) we arrive at

f (x) =

∫ ∞

−∞
F (ω)eiωx dω

F (ω) =
1

2π

∫ ∞

−∞
f (x)e−iωx dx . (6.10)

HereF (ω) is called theFourier transform of f (x), with ω called the (angular) frequency , which is the
continuous version of then we had before.

Note: there are several possible “arbitrary choices” of where to put the 2π ’s and minus signs in the above
definitions; some books put a factor 1/

√
2π before both integrals, which makes them symmetrical. Other

authors leave a 2π inside the exponential term, in which caseω is usually changed to a different letter e.g.
ν = ω/2π . As long as this is done consistently, it doesn’t matter, butthere must be factors of 2π somewhere
in the definitions.
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