Calculus III
 Test

11 Nov 2010
Time allowed: 40 min
Name:
Student number:

There are ten questions. All questions are multiple-choice. Please enter answers with an X in the appropriate box. If you want to change an answer, solid-fill in the old answer, and use an X for your final answer.

Blank sheets are provided for rough work.
Questions 1-5 carry 3 marks each, and 6-10 carry 4 marks each. Each question left unanswered gets 1 mark. Incorrect answers get no marks. The maximum mark is 35 .

There are several equivalent but re-ordered versions of this paper. Do not be concerned if other people appear to have a different paper.

1. Two points are given by position vectors \mathbf{a} and \mathbf{b}. The vector equation for the straight line through these two points is:
$\square(\mathbf{r}-\mathbf{a}) \cdot \mathbf{b}=0$
$\square \mathbf{r}=\mathbf{a}+t(\mathbf{b}-\mathbf{a})$
$\square \mathbf{r}=t(\mathbf{a}+\mathbf{b})$
2. The parametric equation
$\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}+b t \mathbf{k}$
represents an

Ellipse
Circle
Helix
3. The arc-length of the curve $y=x^{3}$ from $(0,0)$ to $(1,1)$ is given by:
$\square \int_{0}^{1} \sqrt{1+9 x^{4}} d x$
$\square \int_{0}^{1} \sqrt{1+3 x^{2}} d x$
$\square \int_{0}^{1} \sqrt{x+x^{3}} d x$
4. A parallelepiped has three of its sides given by $\mathbf{a}=(3,2,1)$ and $\mathbf{b}=$ $(2,-2,1)$ and $\mathbf{c}=(2,1,0)$. The volume of the parallelepiped is:
$\square 5$
$\square 7$
$\square 9$
\square
5. The vector field $\mathbf{F}=\left(3 x^{2}+x y\right) \mathbf{i}+$ $(2 y+z) \mathbf{j}+\left(x y^{2}+z\right) \mathbf{k}$. The divergence $\nabla \cdot \mathbf{F}$ is:

$$
\begin{aligned}
& \square(6 x+y) \mathbf{i}+2 \mathbf{j}+\mathbf{k} \\
& \square 6 x+y+y^{2}+1 \\
& \square 6 x+y+3
\end{aligned}
$$

6. The equation of the tangent plane to the surface $x y+2 x^{2} z=24$ at the point $(3,2,1)$ is:
$\square 3 x+2 y+z=14$
$\square y+12 z=14$
$\square x+y+2 x^{2}+4 x z=35$
$\square 14 x+3 y+18 z=66$
7. A surface is defined by two parameters u, v by $\mathbf{r}=\mathbf{r}(u, v)$. Which of the following is true?
$\square \frac{\partial \mathbf{r}}{\partial u}$ is normal to the surface.
$\square \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}$ is tangent to the surface.
$\square \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}$ is normal to the surface.
$\square \frac{\partial \mathbf{r}}{\partial u}$ and $\frac{\partial \mathbf{r}}{\partial v}$ are perpendicular to each other.
8. The vector field
$\mathbf{F}=\left(x^{3}, y^{2}+2 z, y+z\right)$.
The curl $\nabla \times \mathbf{F}$ is:
$\square-\mathbf{i}$
$\square 3 i$
$\square 3 x^{2} \mathbf{i}+2 y \mathbf{j}+\mathbf{k}$
$3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$
9. For a given scalar field U, the vector field \mathbf{G} is defined by $\mathbf{G}=\nabla U$. Which of the following is definitely true?
$\square \nabla \times \mathbf{G}=\mathbf{0}$
$\square \nabla \cdot \mathbf{G}=0$
$\square \nabla \times \mathbf{G}=\nabla^{2} U$
$\square \mathbf{G} \cdot \mathbf{G}=\nabla\left(U^{2}\right)$
10. The vector field $\mathbf{F}=z \mathbf{i}+2 y \mathbf{k}$. The line integral $\int \mathbf{F} . d \mathbf{r}$ along the curve $\mathbf{r}=t \mathbf{i}+2 t \mathbf{j}+t^{2} \mathbf{k}$ from $(0,0,0)$ to $(1,2,1)$ is:
$\square \frac{5}{3}$
$\square 3$
$\square \frac{7}{3}$
$\square 5$
