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Question 1 [10]

(a) Find the gradient of V = x2 + y2 − 2z

(b) Describe the surface V = 11.

(c) Find an equation for the plane tangent to this surface at the point P = 3i +
2j + k.

Question 2 [11]

(a) The parametric curve C is given by

r = a cos t i + a sin t j + bt k

where a, b are constants and t is the parameter. Describe the curve. Evaluate
the arc-length of the curve between the points (a, 0, 0) and (a, 0, 4πb).

(b) Another curve is given in plane polar coordinates by r = c(1 + cos θ), where c
is a constant. Sketch this curve, and evaluate the area enclosed inside it.

Question 3 [10]

Evaluate the line integral
∫
C F ·dr where F = (x−2z2)i+(y+z)j+xzk and C is the

curve from (0, 0, 0) to (3, 6, 9) described in parametric form as C : r = ti+2tj+ t2k,
where the parameter t has the range 0 ≤ t ≤ 3.

Question 4 [11]

(a) Given a scalar field U and a vector field F, write down the expressions for ∇U
and ∇ · F in Cartesian coordinates.

(b) Prove that ∇ · (UF) = U∇ · F + (∇U) · F.

(c) Hence prove that for two scalar fields U, V , the Laplacian of the product UV
is

∇2(UV ) = U∇2V + V∇2U + 2(∇U) · (∇V )

Question 5 [10]

(a) State the Divergence Theorem.

(b) The vector field F is given by F = (2x + y)i + (y + xz)j + x2k. Evaluate the
divergence ∇·F, and thus using the Divergence Theorem, evaluate the surface
integral

∫
S F.dS summed over all faces of the cuboid 0 ≤ x ≤ a, 0 ≤ y ≤ b,

0 ≤ z ≤ c, where dS is taken in the outward normal direction.
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Question 6 [12]

For each of the following vector fields F, calculate the curl ∇×F. If there is a scalar

field Φ such that F = ∇Φ, find the most general such Φ; otherwise give a reason
why no such Φ exists.

(a) F = x2i + yzj + xzk ,

(b) F = (3x2 + z)i + 2yj + xk .

For the field in (b) above, explain why
∫
C F.dr around any closed curve C is zero.

Question 7 [12]

In spherical polar coordinates (r, θ, φ), the position vector is

r = r sin θ cos φ i + r sin θ sinφ j + r cos θ k

(a) Calculate ∂r/∂θ and ∂r/∂φ, and show they are orthogonal.

(b) Hence prove that the area element dS on a surface of constant r is

dS = r2 sin θ er dθ dφ

where er is the unit vector parallel to r.

(c) The vector field F is given in spherical polar coordinates by
F = 2 cos θ er +sin θ eθ. The surface S is the hemisphere with r = a, z ≥ 0, for
constant a. Using results above, evaluate the surface integral∫

S
F.dS

where the normal is taken in the direction away from the origin.
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Question 8 [12]

(a) State Parseval’s theorem, without proof.

(b) Show that the function f(x) with period 2π whose values in −π ≤ x ≤ π are
given by f(x) = x2 has the Fourier series

S(x) =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos nx

Explain briefly why there are no sin nx terms in the series.

(c) By evaluating S(x) at a suitable x, prove that

∞∑
n=1

1
n2

=
π2

6

Question 9 [12]

(a) For a scalar field U defined in cylindrical polar coordinates (ρ, φ, z), show that
the Laplacian ∇2U is given by

∇2U =
1
ρ

∂U

∂ρ
+

∂2U

∂ρ2
+

1
ρ2

∂2U

∂φ2
+

∂2U

∂z2

(You may quote results from the Appendix).

(b) The general z-independent solution of Laplace’s equation in cylindrical polars
is a sum of terms of the form

U(ρ, φ) = (A0φ + B0)(C0 ln ρ + D0)

+
∞∑

m=1

(Am cos mφ + Bm sinmφ)
(
Cmρm + Dmρ−m

)
where m is any positive integer, and the Ai, Bi, Ci, Di are arbitrary constants.

Find the specific solution U(ρ, φ) of Laplace’s equation in the disk ρ ≤ 2, with
boundary condition given by U = 1+cos2 φ on the circle ρ = 2, and U bounded
at the origin.

End of Paper

( An Appendix of one page follows )
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Appendix

You are reminded of the following, which you may use without proof:

In orthogonal curvilinear coordinates (u1, u2, u3), with corresponding unit vectors
e1, e2, e3 and arc-length parameters h1, h2, h3, the gradient of a scalar field f is
given by

∇f =
1
h1

∂f

∂u1
e1 +

1
h2

∂f

∂u2
e2 +

1
h3

∂f

∂u3
e3.

The divergence of a vector field F = F1e1 + F2e2 + F3e3 is given by

∇.F =
1

h1h2h3

[
∂

∂u1
(h2h3F1) +

∂

∂u2
(h3h1F2) +

∂

∂u3
(h1h2F3)

]
,

and the curl of the same vector field is given by

∇×F =
1

h1h2h3

∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂/∂u1 ∂/∂u2 ∂/∂u3

h1F1 h2F2 h3F3

∣∣∣∣∣∣ .

In spherical polar coordinates (u1, u2, u3) ≡ (r, θ, φ), the arc-length parameters are
h1 = 1, h2 = r, h3 = r sin θ.
In cylindrical polar coordinates (u1, u2, u3) ≡ (ρ, φ, z), the arc-length parameters
are
h1 = 1, h2 = ρ, h3 = 1.
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