Calculus III
 Test

11 Nov 2009

Time allowed: 40 min

Name:

Student number:

All questions are multiple-choice. Please enter answers by marking the appropriate box. Blank sheets are provided for rough work.

The maximum mark is 35 .
Questions 1-5 carry 3 marks each, and 6-10 carry 4 marks each. Each question left unanswered gets 1 mark. Incorrect answers get no marks.

There are several equivalent but re-ordered versions of this paper. Do not be concerned if other people appear to have a different paper.

1. Let \mathbf{a} and \mathbf{b} be two constant vectors. The vector equation $(\mathbf{r}-\mathbf{a}) \cdot \mathbf{b}=0$ represents
\square The line through the point \mathbf{b} parallel to a

The plane through the point \mathbf{b} perpendicular to a
\square The plane through the point a perpendicular to \mathbf{b}
2. The vector field $\mathbf{F}=x^{2} \mathbf{i}+x y z \mathbf{j}+$ $z^{2} \mathbf{k}$. The divergence $\nabla . \mathbf{F}$ is
$2 x+x z+2 z$
$2 x \mathbf{i}+x z \mathbf{j}+2 z \mathbf{k}$
$2 x+x z+y z+x y+2 z$
3. The equation

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1+\frac{z^{2}}{16}
$$

represents an
\square Ellipsoid
\square Hyperboloid
\square Paraboloid
4. The arc-length of the parabola $y=$ x^{2} from $(0,0)$ to $(1,1)$ is given by
$\square \int_{0}^{1} \sqrt{1+4 x^{2}} d x$
$\square \int_{0}^{1} \sqrt{1+2 x} d x$
$\square \int_{0}^{1} x+x^{2} d x$
5. A parallelepiped has three of its sides given by $\mathbf{a}=(0,-1,2)$ and $\mathbf{b}=$ $(2,1,0)$ and $\mathbf{c}=(2,2,1)$. The volume of the parallelepiped is
$\square 2$
15
\square
6. The equation of the tangent plane to the surface $x^{2}+y^{2}+z^{2}+x y z=20$ at the point $(1,2,3)$ is:

$x+2 y+3 z=14$
$\square 8 x+7 y+8 z=46$
$\square x+y+z=6$
$\square x^{2}+y^{2}+z^{2}=14$
7. Let U be any scalar field, and \mathbf{F} be a solenoidal vector field. The divergence $\nabla \cdot(U \mathbf{F})$ is :
$\square U(\nabla . \mathbf{F})$0
$\square(\nabla U) . \mathbf{F}$
$\square U(\nabla \times \mathbf{F})$
8. The vector field $\mathbf{F}=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$. The unit cube is defined by the volume $0 \leq x, y, z \leq 1$. The surface integral $\int \mathbf{F} . \mathbf{n} d S$ over all six faces of the unit cube, with \mathbf{n} the outward unit normal, is

$\square \sqrt{3}$
\square
$\square 6$
9. The vector field $\mathbf{F}=\left(x^{2}-y, y^{2}+\right.$ $\left.x, z^{2}\right)$. The curl $\nabla \times \mathbf{F}$ is

$$
2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}
$$

$\square 2(x+y) \mathbf{i}-2(y+z) \mathbf{j}+2(z+x) \mathbf{k}$
\square
10. The vector field $\mathbf{F}=z \mathbf{i}+2 x \mathbf{k}$. The line integral $\int \mathbf{F} . d \mathbf{r}$ along the line $\mathbf{r}=$ $t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$ from $(0,0,0)$ to $(1,1,1)$ is:
$\square \sqrt{3}$
$\square \frac{3}{5}$
$\square \frac{7}{4}$

