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Question 1 [12]

(a) Find the gradient of V = 9z2 − x2 − 4y2.

(b) Sketch the surface V = 5 and describe its shape.

(c) Find an equation for the plane tangent to this surface at P = i + j + k.

Question 2 [11]
Evaluate the integral

∫
C F·dr where F = (2x−z4)i+(y+2z)j−xyk and C is the path

going from (0, 0, 0) to (1, 1, 1) described in parametric form as C : r = t2i+ t3j+ tk,
where the parameter t obeys 0 ≤ t ≤ 1.

Question 3 [10]
Show that F = (x + y2)i + (3y + xz)j + (2z + y3)k has a constant divergence, and
hence, using the Divergence Theorem, evaluate

∫
S F.dS over the surface of the sphere

of radius a centred at (1, 0, −1), where S is taken in the direction of the outward
normal on the sphere.

Question 4 A surface S has the equation [8]

z = x(1− x)y(1− y)

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The unit square R is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Describe
the boundaries of S and R. Hence, explain carefully why it is that for any (smooth)
vector field F the integral

∫
S ∇ × F.dS is the same as

∫
R∇ × F.dS, assuming the

normal used for both surfaces has a positive k component.

Question 5 [12]
For each of the following vector fields F, calculate the curl ∇ × F. If there is a Φ
such that F = ∇Φ, find the most general such Φ.

(a) F = z2i + x2j + y2k,

(b) F = x2i + y2j + z2k.

Question 6 [13]
Calculate ∇Φ in spherical polar coordinates, where Φ = r2 sin2 θ cos(2φ). Show that
this Φ satisfies Laplace’s equation ∇ · (∇Φ) = ∇2Φ = 0.
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Question 7 The function u(x) obeys the differential equation [11]

x2(u′′ + u′) + (x− 2)u = 0,

where the prime denotes the derivative with respect to x, i.e. u′ =
du

dx
.

Find the nature of the point x = 0 (ordinary, regular singular or irregular singu-
lar).

Using Frobenius’s method, find the solution for the smaller root of the indicial
equation.
[You may quote the following results. If xf = f0 + f1x + f2x

2 + . . . and x2g =
g0 +g1x+g2x

2 + . . . where f and g are the functions appearing in the standard form

u′′ + f(x)u′ + g(x)u = 0,

of the equation, then the indicial equation is

c(c− 1) + f0c + g0 = 0

and the recurrence relation is

ar{(r + c)(r + c− 1) + f0(r + c) + g0}+ ar−1{(r + c− 1)f1 + g1}
+ar−2{(r + c− 2)f2 + g2}+ . . . + a0{cfr + gr} = 0 .]

Question 8 [10]
Show that the even function with period 2π whose values in [0, π] are given by
f(x) = ex has the Fourier series

S(x) =
eπ − 1

π
− 2

π

∞∑
n=1

1− (−1)neπ

1 + n2
cos nx.

[You may quote the result that∫ π

0
ex cos(nx)dx =

[
ex cos(nx)

n2

]π

0

− 1
n2

∫ π

0
ex cos(nx)dx

which comes from integration by parts.]
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Question 9 [13]
The function V (x, y) satisfies ∇2V = 0 in the region 0 < x < a, 0 < y < b and the
boundary conditions that V = g(y) on x = a, for some function g(y), and V = 0 on
the other three sides of the region (and at all the corners).

(a) Show that the solution for V takes the form of a series

V =
∞∑

n=1

Kn sinh
nπx

b
sin

nπy

b
.

[You may assume that the general solution of Laplace’s equation in the rect-
angle takes the form of a sum of terms of the forms

(A0 + B0x)(C0 + D0y),(
An cos

nπx

a
+ Bn sin

nπx

a

) (
Cn cosh

nπy

a
+ Dn sinh

nπy

a

)
,(

an cosh
nπx

b
+ bn sinh

nπx

b

) (
cn cos

nπy

b
+ dn sin

nπy

b

)
,

where n is any positive integer, and the ai, bi, ci, di, Ai, Bi, Ci and Di are
constants.]

(b) For the specific case where g(y) = V0, where V0 is a constant, find the coeffi-
cients Kn and hence find V .

[You may assume that the odd function f(y) with period 2b and value V0 in
(0, π) has the Fourier series

∞∑
k=1

4V0

(2k + 1)π
sin(2k + 1)

πy

b
.]

End of Paper: an Appendix of 1 page follows
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Appendix

You are reminded of the following, which you may use without proof.
In orthogonal curvilinear coordinates (u1, u2, u3), with corresponding unit vectors
e1, e2, e3 and arc-length parameters h1, h2, h3, the gradient of a scalar field f is
given by

∇f =
1
h1

∂f

∂u1
e1 +

1
h2

∂f

∂u2
e2 +

1
h3

∂f

∂u3
e3.

The divergence of a vector field F = F1e1 + F2e2 + F3e3 is given by

∇.F =
1

h1h2h3

[
∂

∂u1
(h2h3F1) +

∂

∂u2
(h3h1F2) +

∂

∂u3
(h1h2F3)

]
,

and the curl of the same vector field is given by

∇×F =
1

h1h2h3

∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂/∂u1 ∂/∂u2 ∂/∂u3

h1F1 h2F2 h3F3

∣∣∣∣∣∣ .

In spherical polar coordinates (u1, u2, u3) ≡ (r, θ, φ), the arc-length parameters are
h1 = 1, h2 = r, h3 = r sin θ.
In cylindrical polar coordinates (u1, u2, u3) ≡ (ρ, φ, z), the arc-length parameters
are
h1 = 1, h2 = ρ, h3 = 1.
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