Calculus III
 Test

Nov 7, 2008

Time allowed: 40 min

Name:
Student number:
All questions are multiple-choice. Please enter answers by marking the appropriate box. Blank sheets are provided for rough work.

The maximum mark is 35 .
Questions 1-5 carry 3 marks each, and 6-10 carry 4 marks each. Each question left unanswered gets 1 mark. Incorrect answers get no marks.

There are several equivalent but not identical versions of this paper. Do not be concerned if others appear to have a different paper.

1. The line through a point at position a and parallel to a vector \mathbf{n} is represented by the equation

$$
\begin{aligned}
& \square(\mathbf{r}-\mathbf{a}) . \mathbf{n}=0 \\
& \square(\mathbf{r}+\mathbf{a}) \times \mathbf{n}=\mathbf{0} \\
& \square \mathbf{r}=\mathbf{a}+t \mathbf{n}
\end{aligned}
$$

2. The surface described by

$$
x^{2}+z^{2}=9+y
$$

is a
sphere.
\square paraboloid.
\square hyperboloid.
3. $\mathbf{F}=\left(6 x^{2}+2 x y\right) \mathbf{i}+\left(2 y+x^{2} z\right) \mathbf{j}+$ $\left(x y^{3}+z\right) \mathbf{k}$ is a vector field. Its divergence ∇. \mathbf{F} is

$$
\begin{aligned}
& \square(12 x+2 y) \mathbf{i}+2 \mathbf{j}+\mathbf{k} \\
& \square 12 x+2 y+3 \\
& \square 14 x+2 y+3+2 x z+x^{2}+3 x y^{2}+y^{3}
\end{aligned}
$$

4. The Divergence Theorem says that under certain conditions

$$
\int_{\mathcal{D}} \nabla \cdot \mathbf{F} \mathrm{d} V=\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \mathrm{d} S
$$

for a vector field \mathbf{F} defined in a volume \mathcal{D} enclosed by a surface \mathcal{S}. Which of the following conditions can be omitted when stating the Theorem?
$\square \mathcal{S}$ is a closed oriented surface.
\square The normal \mathbf{n} on \mathcal{S} is taken outward from \mathcal{D}.
$\square \mathcal{S}$ is simple (i.e. is a single piece and does not cross itself).
5. One of the following is not necessarily true for a conservative vector field F. Which?
$\square \nabla \cdot \mathbf{F}=0$.
$\square \nabla \times \mathbf{F}=\mathbf{0}$.
$\square \mathbf{F}=\nabla \phi$ for some scalar field ϕ.
6. The expression

$$
r=\sqrt{\cos (2 \phi)}(\mathbf{i} \cos \phi+\mathbf{j} \sin \phi)
$$

with $0 \leq \phi \leq \infty$ represents a curve in the x, y plane which is
a circle.
a heart shape, without a cusp (cardioid).
an ellipse.
\square a figure of eight (lemniscate).
7. $V=x y+2 x^{2} z$. The value of ∇V at the point $(-2,3,1)$ is
$\square-5 \mathbf{i}-2 \mathbf{j}+8 \mathbf{k}$.
$\square-5 \mathbf{i}-2 \mathbf{j}-8 \mathbf{k}$.
$\square 1$.
$\square-15$.
8. The curl of the vector field $\mathbf{F}=$ $\left(x^{2}-3 z, y, x z\right)$ is
$\square 2 x \mathbf{i}+\mathbf{j}+x \mathbf{k}$.
$\square(z+3) \mathbf{j}$.
$\square 3 x+1$.
$\square-(z+3) \mathbf{j}$.
9. If $\mathbf{F}=z \mathbf{i}-y \mathbf{j}+x \mathbf{k}$, the integral $\int \mathbf{F} . \mathrm{dr}$ along the curve $\mathbf{r}=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$ from $(0,0,0)$ to $(1,1,1)$ is
$1 / 2$.
$1 / 5$.
\square 2/3.
6 .
10. The surface of a sphere is parametrized as

$$
\mathbf{r}=a(\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \phi)
$$

The surface area element in terms of the coordinates (θ, ϕ) is
$\square a \cos \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathbf{r}$.
$\square a \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathbf{r}$.
$\square-a \cos \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathbf{r}$.
$\square-a \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathbf{r}$.

