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B.Sc. EXAMINATION BY COURSE UNITS

Answers to 2008 MAS204 Calculus III exam

SECTION A
Answers in section A are cross-referenced to the Key Objectives (KO), in the order used

in the course (Copy appended to these answers).

A1. {KO2 and KO5: similar problems in lectures and exercises}

(a) ∇V = 18xi + 2yj− 8zk [3]

(b) An (ellipsoidal) hyperboloid (of one sheet) [accept just hyperboloid as the de-
scription] [3]

(c) At P, ∇V = 18i + 2j− 8k, so we get

r = (1 + 18t)i + (1 + 2t)j + (1 − 8t)k

or equivalent, for the normal line. [4]

Comment: Part a was well done but part b was not and the sketches often disagreed
with the descriptions. In part c, many people did things like forget to substitute P into
∇V , and a lot gave the tangent plane rather than the normal line.

A2. {KO1} [method 3]

r = 2ti + t2j + t3k
dr

dt
= 2i + 2tj + 3t2k

F = 3t4i + 5t3j + 16t2k on the curve

F.
dr

dt
= 6t4 + 10t4 + 48t4 = 64t4

∫ 1

0
64t4dt =

[

64t5

5

]1

0

=
64

5

Marks, per line above, 0,1,1,2,1. [5]
Comment: Quite a lot of correct answers. Main errors were in the arithmetic, in using
some other path, or in taking the upper limit of t to be 2 rather than 1.

A3. { KO 2 and 3}

c© Queen Mary, University of London, 2009 [This question continues overleaf . . . ]



2

(a)

F = x2i + y3j + z2k

Φ =
1

3
x3 +

1

4
y4 +

1

3
z3

Various routes possible. [4]

(b)

F = xzi + y2j + xzk

∇× F =

∣

∣

∣

∣

∣

∣

∣

i j k

∂/∂x ∂/∂y ∂/∂z
xz y2 xz

∣

∣

∣

∣

∣

∣

∣

= (x − z)j 6= 0

Hence no Φ is possible. [4]

Comment: those who made a serious attempt did quite well.

A4. { KO 3}
∇ · F = 2 + 1 + 3 = 6

so
∫

S F.dS =
∫

∇ · F dV = 6.(4πa3)/3 = 8πa3.
M2 for correct Div Thm, 3 for div, 3 for result [8]
Comment: a lot of people tried to directly evaluate

∫

S F.dS, without success. More than
I would have hoped gave a vector rather than a scalar for ∇ · F.

A5. { KO 4}

(a) δijδjkδki = δikδki = δkk = 3 [4]
Note: 2 for use of delta, 2 for δkk = 3

(b) [∇× (ΦF)]i = ǫijk∂j(ΦFk) = Φǫijk∂jFk + ǫijkFk∂jΦ = [Φ∇× F− F×∇Φ]i [5]

Comment: A lot of candidates were convinced that a question on index notation had
to make use of the ǫijkǫilm identity so tried to bring it in in some way.

A6. { KO 6}

un = 2 +
∫ x

0
(un−1 + xu2

n−1)dx

u1 = 2 +
∫ x

0
(2 + 4x)dx = 2 + 2x + . . .

u2 = 2 +
∫ x

0
((2 + 2x + . . .) + x(2 + 2x . . .)2)dx = 2 + 2x + 3x2

u3 = 2 +
∫ x

0
((2 + 2x + 3x2 . . .) + x(2 + 2x . . .)2)dx

= 2 +
∫ x

0
((2 + 2x + 3x2 . . .) + 4x + 8x2 . . .)dx = 2 + 2x + 3x2 +

11

3
x3

Note: the exact solution is 1/(1 − x − 1
2
e−x)

Marks: Method 3, u1 1, u2 2, u3 3. [9]
Comment: candidates who got this wrong but knew the basic idea either stopped after
too few iterations or were let down by their algebra or integration.

[Next question overleaf ]
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A7. { KO 7} As this is an odd function there are no cosine terms. The sine terms have

bm =
2

π

∫ π

0
x sin mxdx

=
2

π

{[

−x cos mx

m

]π

0
+
∫ π

0

cos mx

m
dx
}

=
2

π

{

−π cos mπ

m
+
[

sin mx

m2

]π

0

}

=
2(−1)m+1

m

Hence the result stated. [8]
Marks: 2 for cos, M2, A4 for sin bits
Comment: A fair number of good answers.

SECTION B

B1. All of these can be done by writing out components but it is messier.

(a) ∇(r2(a.r))i = ∂ixkxkxjaj = 2δikxkxjaj + xkxkδijaj = 2xixjaj + xkxkai [4]

(b) (∇× r)i = ǫijk∂jxk = ǫijkδjk = ǫikk = 0. [2]
(∇r2)i = ∂i(xjxj) = 2xj∂ixj = 2xjδij = 2xi [3]
((b.∇)r)i = bj∂jxi = bjδji = bi. [2]
[(b.∇)(r2a)]i = bj∂j(xkxkai) = 2aibjxk∂jxk = 2aibjxkδjk = 2aibjxj = [2(b.r)a]i [4]
Note: parts (i) and (iii) done as bookwork: hence lower marks. }

Using the given identity, previous answers and Q A5

∇ [(r2a).r] = r2a × (∇× r) + r × (∇× r2a) + (r2a.∇)r + (r.∇)r2a

= r2a × 0 + r × (r2∇× a − a ×∇r2) + r2a + 2(r.r)a

= r × (−2a× r) + r2a + 2r2a

= −2[(r.r)a − (r.a)r] + 3r2a

= 2(r.a)r + r2a

[5]
Comment: See the comment on Q A4: the same problem occured here. Triply-occurring
indices arose in some answers. Some got confused between vectors and scalars e.g.
wrote things like r2 = (x2, y2, z2). Handling of the differentiations was poor.

[This question continues overleaf . . . ]
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B2. (a) [6]

r = (4 − t2)i + tj

dr

dt
= −2ti + j

F = −ti + 2(4 − t2)j + tk on the curve

F.
dr

dt
= 2t2 + 2(4 − t2) = 8

∫ 2

−2
8dt = 32

(b) A suitable parametrization is y = 2 cos θ, z = 2 sin θ [2]

dr

dθ
= −2 sin θj + 2 cos θk

F = −2 cos θi + 0j + 2 cos θk on the curve

F.
dr

dt
= 0 + 0 + 4 cos2 θ

∫ π

0
4 cos2 θ dθ = 1

2
4π = 2π

[6]

C1 is the curve in the x − y plane in the figure, taken from −2.
C2 is the curve in the y − z plane in the figure, taken from 2.
The surface integral, by Stokes’s theorem, is therefore the sum of the two previous
results i.e. 2π + 32 [6]
Comment: The line integrals were quite well done, especially the first of the two. Quite
a few calculated ∇×F, unnecessarily. Few did as requested for the sketch and quite a
few misidentified the curves.

B3. {The calculation of ∇2 in polars is bookwork.}
∫

S ∇Ψ.dS =
∫

V ∇2Ψ dV = 0
using the Divergence Theorem and the fact that Ψ solves Laplace. [4]

Now in spherical polar coordinates, (using formulae on the front sheet)

∇Φ =
∂Φ

∂r
er +

1

r

∂Φ

∂θ
eθ +

1

r sin θ

∂Φ

∂φ
eφ

and the divergence of F = Frer + Fθeθ + Fφeφ is

∇ · F =
1

r2 sin θ

[

∂(r2 sin θFr)

∂r
+

∂(r sin θFθ)

∂θ
+

∂(rFφ)

∂φ

]

.

Hence putting these together we obtain [3]

∇2Φ =
1

r2 sin θ

[

∂

∂r

(

r2 sin θ
∂Φ

∂r

)

+
∂

∂θ

(

sin θ
∂Φ

∂θ

)

+
∂

∂φ

(

1

sin θ

∂Φ

∂φ

)]

.

[This question continues overleaf . . . ]
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Inserting the given Ψ1 we get

∇2Ψ1 =
1

r2 sin θ

[

∂

∂r

(

r2 sin θ(2r sin θ cos θ cos φ)
)

+
∂

∂θ

(

sin θ(r2(cos2 θ − sin2 θ) cos φ)
)

+
(

1

sin θ
(−r2 sin θ cos θ cos φ)

)

]

=
1

r2 sin θ

[

6r2 sin2 θ cos θ cos φ

+r2 cos φ(cos3 θ − 2 sin2 θ cos θ − 3 sin2 θ cos θ) − r2 cos θ cos φ
]

=
cos φ

sin θ
(sin2 θ cos θ + cos3 θ − cos θ) = 0

[5]

We only used
∂2 cos φ

∂φ2
= − cos φ and sin φ obeys the same equation. [2]

In Cartesians these are Ψ1 = xz and Ψ2 = yz. [2]
The two vector fields F1 and F2 differ by F1 − F2 = zi + zj + (x + y)k = ∇(Ψ1 + Ψ2)
so the difference vanishes by the first result above. [4]
Comment: too few attempts at this to draw conclusions except that it was not popular.

B4. { All of this is bookwork. } This is not quite in the standard form: we would need to
divide by 1 − x2 to get f = −2x/(1 − x2) and g = ℓ(ℓ + 1)/(1 − x2). As x → 0 these
tend to 0 and ℓ(ℓ + 1) respectively, so x = 0 is an ordinary point. [2]

0 =
∞
∑

n=0

(n + c)(n + c − 1)anx
(n+c−2) − x2(

∞
∑

n=0

(n + c)(n + c − 1)anx
(n+c−2))

−2x(
∞
∑

n=0

(n + c)anx(n+c−1)) + λ(
∞
∑

n=0

anx
(n+c))

=
∞
∑

n=0

(n + c)(n + c − 1)anx
(n+c−2) −

∞
∑

n=0

(n + c)(n + c − 1)anx(n+c)

−2
∞
∑

n=0

(n + c)anx
(n+c) +

∞
∑

n=0

λanx(n+c)

=
∞
∑

n=0

(n + c)(n + c − 1)anx
(n+c−2) +

∞
∑

n=0

[λ − (n + c)(n + c + 1)]anx(n+c)

=
∞
∑

n=−2

(n + c + 2)(n + c + 1)an+2x
(n+c) +

∞
∑

n=0

[λ − (n + c)(n + c + 1)]anx
(n+c)

0 =
∞
∑

n=−2

{(n + c + 2)(n + c + 1)an+2 + [λ − (n + c)(n + c + 1)]an}x
(n+c) = 0.

[This question continues overleaf . . . ]
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[M3,A3]

Taking the n = −2 term in the sum we find [2]

(c)(c − 1)a0x
c−2 = 0

and since a0 6= 0 this implies c = 0 or c = 1. [In fact the values of c at any ordinary
point of any equation are always c = 0 and c = 1.]

Taking the coefficient of x(r+c) for r > −2 we have [2]

(r + c + 2)(r + c + 1)ar+2 + [λ − (r + c)(r + c + 1)]ar = 0 .

In the case c = 1, we have

(r + 3)(r + 2)ar+2 = [(r + 2)(r + 1) − λ]ar

which in particular (for r = −1) gives a1 = 0. All higher an with odd n will then also
be zero. The series will terminate if ℓ is an odd integer: taking r = ℓ − 1 gives [3]

(ℓ + 2)(ℓ + 1)aℓ+1 = [(ℓ + 1)ℓ − λ]aℓ−1 ,

so we see that if λ = (ℓ + 1)ℓ, aℓ+1 = 0. In this case the c = 1 series becomes just
a polynomial in odd powers of x, with highest power xℓ. For example for ℓ = 3,
6a2 = −10a0, 20a4 = 0a2, and [3]

u = a0x(1 − 5
3
x2).

If c = 0, we have
(r + 2)(r + 1)ar+2 = [(r + 1)r − λ]ar

and in particular a1 (r = −1) can have any value, meaning we can add a multiple of
the series with c = 1. Taking just the even terms, we see that if λ = (ℓ + 1)ℓ where ℓ
is a positive even integer, aℓ+2 = 0. So we again have a polynomial, this time of even
powers of x, with highest power xℓ. [2]

Thus for the Legendre equation with λ = (ℓ + 1)ℓ where ℓ is an integer, we will always
get one solution which is a polynomial of degree ℓ.
Comment: Not as well done as I would have hoped. This suggests the presentation in
lectures needs to be simplified.

B5. {Unseen but using basic Fourier properties. Similar to last year’s. }
f − 1

2
sin x is even so only has a cosine series. [5]

The coefficients in the Fourier cosine series of 1
2
sin x are given by

an =
2

π

∫ π

0

1
2
sin x cos nxdx

=
1

2π

∫ π

0
(sin(n + 1)x + sin(1 − n)x)dx

[This question continues overleaf . . . ]
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=
1

2π

[

−
cos(n + 1)x

n + 1
−

cos(1 − n)x

1 − n

]π

0

=
1

2π

[

1 − (−1)n+1

n + 1
+

1 − (−1)1−n

1 − n

]

=
1

2π

(1 − (−1)1+n)(1 − n + 1 + n)

1 − n2

if n 6= 1, [M2,A2+3]
and 2

π

∫ π
0 sin x cos xdx = 1

2π
[− cos 2x]π0 = 0 if n = 1. [1]

Thus an = 0 for all odd n. [1]
For even n = 2k ≥ 0 we get 2/(1 − 4k2)π which easily gives the required S(x). [1]

{If candidates did not see this way of doing it, they calculated

bn =
1

π

∫ π

0
sin x sin nxdx

=
1

2π

∫ π

0
(cos(n − 1)x − cos(n + 1)x)dx

=
1

2π

[

sin(n − 1)x

n − 1
−

sin(n + 1)x

n + 1

]π

0

= 0

if n 6= 1. If n = 1 we have

b1 =
1

π

∫ π

0
sin2 xdx =

1

π

π

2
= 1

2
}

Evaluation at x = π/2 gives [5]

1 =
2

π

(

1

2
+

∞
∑

k=1

cos kπ

1 − 4k2

)

+
1

2
.

=
2

π

(

1

2
+

∞
∑

k=1

(−1)k

1 − 4k2

)

+
1

2
.

1
2

=
1

π
+

2

π

∞
∑

k=1

(−1)k

1 − 4k2
.

(−1)k

4k2 − 1
=

1

2
−

π

4

Comment: Rather well done, comparatively

B6. We use the standard trick for eliminating corners: set

g(x, y) = α + βx + γy + δxy

[This question continues overleaf . . . ]
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and solve for the corner values. g(0, 0) = 0 ⇒ α = 0
g(1, 0) = 1 ⇒ β = 1
g(0, 1) = 0 ⇒ γ = 0
g(1, 1) = 0 ⇒ δ = −1
which gives g(x, y) = x − xy. [M3,A4]
(Note that g = 0 on x = 0 and y = 1, g = x on y = 0 and g = 1 − y on x = 1.)

The boundary values of f(x, y) are simply the boundary values of F (x, y)− g(x, y), or
as shown below [3]

0

y(1 − y)

0

0

A solution of the form

f(x, y) =
∞
∑

n=1

bn sinh(nπx/a) sin(nπy/a)

will work. (It satisfies Laplace’s equation, and is zero for x = 0, x = a and y = 0 as
required.) and here a = 1. [3]

We are given that

y(1 − y) =
8

π3

∞
∑

p=0

sin[(2p + 1)πy]

(2p + 1)3
.

Thus bn is such that [3]

∞
∑

n=1

bn sin(nπy) sinh(nπ) =
8

π3

∞
∑

p=0

sin[(2p + 1)πy]

(2p + 1)3
.

Hence the solution is [2]

f(x, y) =
∞
∑

p=1

8

(2p + 1)3π3

sinh((2p + 1)πx)

sinh((2p + 1)π)
sin((2p + 1)πy) .

and the overall solution is f + g. [2]
Comment: relatively few serious attempts

[Next section overleaf ]



9

KEY OBJECTIVES of the course
The student should

1. Be able to do simple line and surface integrals. (E.g. Evaluate
∫

F · dr for a given
vector field, with the path given in either parametric or non-parametric form.)

2. Be able to do simple manipulations involving gradient, divergence, and curl, and un-
derstand their geometrical/physical meaning.

3. Understand Stokes’ theorem and the divergence theorem and be able to do simple
problems applying these.

4. Be able to do simple manipulations in index notation, and switch between vector and
index notation wherever necessary.

5. Understand three-dimensional cartesian, cylindrical, and spherical polar coordinates
geometrically, and be able to express lines, surfaces, and volumes in coordinate or
vector notation as appropriate.

6. Be able to obtain series solutions of differential equations using the Picard or Frobenius
methods, including the Legendre, Bessel and Hermite functions.

7. Know the important properties of Fourier series and be able to compute coefficients.

8. Understand the variable-separation technique for PDEs and be able to solve simple
problems with Laplace’s equation in (at least) 2D Cartesian coordinates.

[End of examination paper]


