Calculus III
 Test

Nov 9, 2007
Time allowed: 40 min
Name:
Student number:
All questions are multiple-choice. Please enter answers by marking the appropriate box. Blank sheets are provided for rough work.
The maximum mark is 35 .
Questions 1-5 carry 3 marks each, and 6-10 carry 4 marks each. Each question left unanswered gets 1 mark. Incorrect answers get no marks.
There are several equivalent but not identical versions of this paper. Do not be concerned if others appear to have a different paper.

1. The plane through a point at position \mathbf{a} and perpendicular to a vector \mathbf{n} is represented by the equation
$\square \mathbf{r}=\mathbf{a}+t \mathbf{n}$.
$\square(\mathbf{r}-\mathbf{a}) \cdot \mathbf{n}=0$.
$\square(\mathbf{r}-\mathbf{a}) \times \mathbf{n}=\mathbf{0}$.
2. The surface described by

$$
x^{2}+y^{2}=z^{2}+4
$$

is a
sphere.
paraboloid.
hyperboloid.
3.

Figure for question 3.

In the diagrams above
\square the left hand vector field has nonzero divergence and the right non-zero curl.
\square the left hand vector field has nonzero curl and the right non-zero divergence.
\square neither of the above.
4. $\mathbf{F}=\left(2 x z-y^{2}\right) \mathbf{i}+y^{2} \mathbf{j}+\left(z x^{2}+x y\right) \mathbf{k}$ is a vector field. Its divergence $\nabla . \mathbf{F}$ is

$$
\begin{aligned}
& \square 2 z \mathbf{i}+2 y \mathbf{j}+x^{2} \mathbf{k} \\
& \square x^{2}+2 y+2 z \\
& \square x^{2}+3 x+y+2 z+2 x z
\end{aligned}
$$

$\square \epsilon_{m j k} b_{k}\left(c_{p} d_{p}\right) a_{j}=a_{k}$
$\square a_{m} b_{m}=5 c_{p} d_{p}$
6. $V=x y^{2}+3 x z$. The value of ∇V at the point $(2,-1,1)$ is
$\square 4 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k}$.
$\square 2 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k}$.
$\square 4$
7. The curl of the vector $\left(x, y-z^{2}, y z\right)$
is
$\square \mathbf{i}+\mathbf{j}+y \mathbf{k}$.
$\square-z \mathbf{i}$.
$\square 2 \mathbf{i}+(1+y) \mathbf{j}+(1-2 z) \mathbf{k}$.
$\square 3 z \mathbf{i}$.
8. If $\mathbf{F}=y \mathbf{i}-3 z \mathbf{j}+2 x \mathbf{k}$, the integral $\int \mathbf{F} . \mathbf{d r}$ along the curve $\mathbf{r}=\cos t \mathbf{i}+$ $2 \sin t \mathbf{j}$ from $(1,0,0)$ to $(-1,0,0)$ is
\qquad π.
$\square 0$.
$\square-\pi$.
$\square-2 \pi$
9. \mathcal{S} is the sphere of radius a centred at the origin, bounding a volume $\mathcal{V} . \mathcal{H}$ is the hemisphere of \mathcal{S} in $z \geq 0$. The area element on both is taken so that $\mathrm{d} \mathbf{S}$ has a positive \mathbf{k} component if $z>0$. \mathcal{C} is the circular curve defined by $\mathbf{r}=$ $a \sin t \mathbf{i}+a \cos t \mathbf{j}$, enclosing the disk $\mathcal{D} . \mathbf{F}$ is a (suitably differentiable) vector field. One of the following is false. Which?
$\square \int_{\mathcal{V}} \nabla \cdot \mathbf{F} \mathrm{d} V=\int_{\mathcal{S}} \mathbf{F} . \mathrm{d} \mathbf{S}$.
$\square \int_{\mathcal{H}} \nabla \times \mathbf{F} . \mathrm{d} \mathbf{S}=\int_{\mathcal{C}} \mathbf{F} . \mathrm{d} \mathbf{r}$.
$\square \int_{\mathcal{H}} \nabla \times \mathbf{F} . \mathrm{d} \mathbf{S}=\int_{\mathcal{D}} \nabla \times \mathbf{F} . \mathbf{k} \mathrm{d} x \mathrm{~d} y$.
\square If $\nabla \times \mathbf{F}=\mathbf{0}$, then $\int_{\mathcal{C}} \mathbf{F} . \mathrm{d} \mathbf{r}=0$ and \mathbf{F} is conservative.
10. Given that

$$
\epsilon_{i j k} \epsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l},
$$

which of the following is not equal to $\epsilon_{m k i} \epsilon_{i l m}$?
$\square 2 \delta_{k l}$.
$\square \delta_{i j} \epsilon_{m k j} \epsilon_{m i l}$
$\square-2 \delta_{k l}$.
$\square-\epsilon_{m i k} \epsilon_{m i l}$

