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B.Sc. EXAMINATION BY COURSE UNITS

Answers to 2007 MAS204 Calculus III exam

General comment: this examination paper was too hard, as it turned out. Allowance was
made for this in marking. On the other hand, some section A questions induced surprisingly
many basic errors. For those taking the course in 2007-8, note that questions A.6 and B.5
are no longer on the syllabus.

SECTION A
Answers in section A are cross-referenced to the Key Objectives (KO), in the order used

in the course (Copy appended to these answers).

A1. {KO4 and KO7: similar problems in lectures and exercises}

(a) ∇V = 2xi + 2yj− k [3]
Comment: a disappointingly high fraction of candidates gave a scalar rather than
a vector as the answer. (Those made this mistake and differentiated correctly gave
(2x + 2y − 1) but still got no marks.)

(b) A paraboloid of revolution about the z-axis [3]
Comment: most of the wrong answers said it was a sphere.

(c) At P, ∇V = 2i + 4j− k, so we get r.∇V = P.∇V which is
2x + 4y − z = 2.1 + 4.2− 4 = 6. [4]
Comment: some candidates forgot that before using the gradient in the equation
for the plane it had to be evaluated at P. Hence they gave a quadratic, rather than
linear, equation. Some claimed ∇V = 2i + 4j− 4k.

A2. {KO 3: similar to examples in lectures and courseworks.}

(a) dr = (−2ti + j)dt so we need∫ 2

−2
(−2t(4− t2) + 2t2 + 2t(4− t2))dt =

∫ 2

−2
2t2dt = [2t3/3]2−2 = 32/3.

[4]
Comment: quite well done. Main errors were in collecting the terms to get 2t2.

(b) Taking y = 2 cos θ, z = 2 sin θ [or equivalent]
dr = (−2 sin θj + 2 cos θk)dθ, so we have∫ π

0
4 cos2 θdθ = 41

2
(π) = 2π.
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[4]
Comment: given the number of times students had seen this kind of thing in
lectures and exercises, surprisingly few knew how to start by choosing a good
parametrization.

A3. {KO5 and 7. Bookwork and simple application.}
The two surfaces have the same boundary described in the same sense. Hence by
Stokes’ theorem, the two surface integrals of the curls are the same. [3]

The given F has curl i + j + k. (Candidates could evaluate this using the determinant
form.) [3]

Hence, using Stokes’ theorem to convert to the integral over the disk, the integral over
the surface is

∫
dxdy over the disc which is πa2. [The integral directly round the curve

is tractable so candidates are specifically told not to do that.] [3]
Comment: A number of candidates worked on ∇(x2 + y2 + z2 − a2). Rather few gave
the (short) answer to the first part.

A4. {KO6. Seen: this example done in coursework.}

εijk∂j(εklmFlGm) = (δilδjm − δimδjl)∂j(FlGm)

= ∂m(FiGm)− ∂l(FlGi)

= Fi(∂mGm) + Gm∂mFi −Gi(∂mFm)− Fm∂mGi

[Forming expression 2, using identity and delta 3]
so ∇× (F×G) = F(∇ ·G) + (G.∇)F−G(∇ · F)− (F.∇)G [last steps 2]
Comment: a lot of students started by writing down εijk∂j(εilmFlGm). I guess they
thought the names of indices in the problem had to exactly match those in the hint,
despite having done the coursework.

A5. {KO 1: similar examples in coursework and old papers}
f is odd so we need only

bn =
2

π

∫ π

0
sin(nx)dx =

2

π

[
− cos(nx)

n

]π

0

=
2

nπ
[1− (−1)n]

which is zero if n is even and 4/nπ if n is odd.

Hence the series is as given. [6]
Comment: quite a few candidates wasted time by directly evaluating an rather than
using the oddness of f .

Since f 2 = 1, Parseval gives

2π = 16π
∑

n odd

1

n2π2

which is easily rearranged to the given formula. [3]
Comment: those who tried this did it well.

[Next question overleaf ]
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A6. {KO 2: First part bookwork. Rest unseen}
The condition is that L is independent of y. [2]
Comments: quite a few said it had to be independent of y′.

In this problem that is true so we have 2x2ny′ =constant, whence y = Ax1−2n + B. [4]
Comment: done well

For this to cross x = 0 we need A = 0 or n < 1/2. [2]
[Bonus 2 for anyone who did n = 1/2 separately!]
Comment: answered by very few

A7. {KO8. First part unseen but like bookwork. Second like one in lectures.}

0 =
∂2Φ

∂2x
+

∂2Φ

∂2y
= sinh(2πy)

∂2g

∂2x
+ 4π2 sinh(2πy)g ⇒ ∂2g

∂2x
= −4π2g.

The solution is g = A cos(2πx) + B sin(2πx). [5]

The boundary condition at y = 0 is OK, the ones at x = 0 and x = 1 are OK if A = 0
and then B = 1/ sinh(4π) to get the one on y = 2. [4]
Comment: some answers assumed the first part was exactly like the bookwork, i.e. did
not read the question carefully. Very few could do the last part.

SECTION B

B1. {Unseen but closely related to examples on past papers}

(a) (∇× F)× F = (fF)× F = 0 by usual rule that a× a = 0 for any vector. [3]

(b) The initial equation implies (since div(curl) is always 0, and using vector identi-
ties) that
∇ · (∇× F) = 0 = ∇ · (fF) = F.∇f + f∇ · F so if ∇ · F = 0 then F.∇f = 0. [5]

(c) If f is constant, ∇ × (∇ × F) = f(∇ × F) – also Beltrami (by applying curl to
∇× F = fF). [3]

The given F has a curl given by

∇× F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

A sin(y3) 0 A cos(y3)

∣∣∣∣∣∣∣
= 3Ay2(− sin(y3)i− cos(y3)k)

so f = −3y2. [4+2]
Showing ∇ · F = 0 may be done directly but the simplest way is to use the argument
in part (b) in reverse since it is easy to see F.∇f = 0 in this case and so f∇ · F = 0
but f 6= 0. [3]
Comment: quite well done, with slips in calculation the main errors. Some assumed,
wrongly, that (∇× F)× F = ∇× (F× F).

[Next question overleaf ]
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B2. In spherical polars

∇ · F =
1

r2 sin θ

[
∂(r2 sin θFr)

∂r
+

∂(r sin θFθ)

∂θ
+

∂(rFφ)

∂φ

]

=
1

r2 sin θ

[
∂(r3 sin θ(sin θ + cos θ))

∂r
+

∂(2r2 sin2 θ)

∂θ

]

=
1

r2 sin θ
[3r2(sin2 θ + sin θ cos θ) + 4r2 sin θ cos θ]

= 3 sin θ + 7 cos θ.

(using the formulae on the cover sheet) [4]

The volume integral is∫
(∇ · F)dV =

∫ a

0

∫ π

0

∫ 2π

0
(3 sin θ + 7 cos θ)r2 sin θ dφdθdr

=
∫ a

0

∫ π

0

∫ 2π

0
(3 sin2 θ +

7

2
sin(2θ))r2 dφdθdr

= (2π)

(
a3

3

)
(3

2
π + 7

4
[cos(2θ)]π0 )

= π2a3.

The surface integral is (since dS = r2 sin θdθdφ er)∫
F.dS =

∫ π

0

∫ 2π

0
a3(sin2 θ + cos θ sin θ)dθdφ

=
∫ π

0

∫ 2π

0
a3(sin2 θ + 1

2
sin(2θ))dθdφ

= 2πa3(1
2
π + 1

4
[cos(2θ)]π0 )

= π2a3

{2+3 for forming integrals, 3 for correct integration of sin2, 3 for sin cos integration, 2
for final answers} [13]

The hemisphere gives simply half the volume integral for the sphere but one could also
do it by halving the surface integral since F.dS = 0 on the plane face. [3]
Comment: a lot of correct evaluations of ∇·F but very few good answers for the rest.

B3. {Unseen. First two parts like bookwork and examples. Last bit novel but rescaling x
in a Fourier series seen in an example.}

(a) Candidates could calculate the curl and show it is zero, or could integrate directly
to get
Φ =

∑∞
n=1

aAn

nπ
sin(nπx/a) sinh(nπy/a). [8]

[This question continues overleaf . . . ]
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(b)

∇ · F =
∂G

∂x
+

∂H

∂y

=
∞∑

n=1

−nπAn

a
sin(nπx/a) sinh(nπy/a)

+
∞∑

n=1

nπAn

a
sin(nπx/a) sinh(nπy/a)

= 0.

[4]

(c) The given form already satisfies the boundary conditions on x = 0, x = a, and
y = 0. [3]
The remaining boundary condition can be found by rescaling the x (by X = πx/a)
in the given formula to get

1
2
a− |1

2
a− x| = 4a

π2

∞∑
p=1

(−1)p sin((2p + 1)πx/a)

(2p + 1)2
.]

whence

∞∑
n=1

An sin(nπx/a) cosh(nπb/a) =
4a

π2

∞∑
p=1

(−1)p sin((2p + 1)πx/a)

(2p + 1)2
.]

so we need An = 0 for n even and [5]

A2p+1 =
4a(−1)p

π2(2p + 1)3 cosh((2p + 1)πb/a)
.

Comment: very few answers and those mostly not very complete.

B4. {Unseen but using basic Fourier properties}
The coefficients in the Fourier series are given by

an =
1

π

∫ π

−π
f(x) cos nxdx

=
1

π

∫ π

0
cos x cos nxdx

=
1

2π

∫ π

0
(cos(n + 1)x + cos(n− 1)x)dx

=
1

2π

[
sin(n + 1)x

n + 1
+

sin(n− 1)x

n− 1

]π

0

= 0

[This question continues overleaf . . . ]
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if n 6= 1, and 1
π

∫ π
0 cos2 xdx = 1

π
π
2

= 1
2

if n = 1. [6]

bn =
1

π

∫ π

−π
f(x) sin nxdx

=
1

π

∫ π

0
cos x sin nxdx

=
1

2π

∫ π

0
(sin(n + 1)x + sin(n− 1)x)dx

=
1

2π

[
− cos(n + 1)x

n + 1
− cos(n− 1)x

n− 1

]π

0

=
n

π(n2 − 1)
(1− (−1)n+1)

if n 6= 1. This is 0 if n is odd and 4p
π(4p2−1)

if n = 2p is even. If n = 1 we have

b1 =
1

π

∫ π

0
cos x sin xdx =

1

π

∫ π

0

1
2
sin(2x)dx =

1

π
1
4
[− cos(2x)]π0 = 0.

[6]
[Note: a really smart candidate might say that f − 1

2
cos x is odd so only has a sine

series, etc.]

The value of S at x = π is −1
2
. (Jump from −1 to 0 there.) [2]

Evaluation at x = π/4 gives [method 3]

1√
2

= 1
2

1√
2

+
4

π

∞∑
s=0

(−1)s(2s + 1)

(4(2s + 1)2 − 1)
,

since sin(2px) at x = π/4 is sin(1
2
pπ) which is 0 for even p and (−1)(p−1)/2 for odd p.

Rearranging gives the result. [3]
Comment: a surprising number of candidates evaluated using f = x rather than f =
cos x. Some wrote a0 = cos x. Few were clear about a1 being a special case. Some
evaluated S at π/4 directly, and correctly. Few got all the way.

B5. {First part bookwork. Example unseen but similar to examples seen.}
y must obey the Euler-Lagrange equation, i.e. [3]

d

dx

(
∂L

∂y′

)
− ∂L

∂y
= 0 .

Since
dL

dx
=

∂L

∂x
+ y′

∂L

∂y
+ y′′

∂L

∂y′
= y′

∂L

∂y
+ y′′

∂L

∂y′
, [3]

[This question continues overleaf . . . ]



7

if we multiply the Euler-Lagrange equation by y′ we get

0 = y′
d

dx
(
∂L

∂y′
) − y′

∂L

∂y

=
d

dx
(y′

∂L

∂y′
) − y′′

∂L

∂y′
− y′

∂L

∂y
[2]

=
d

dx
(y′

∂L

∂y′
− L) . [2]

Hence in this case

y′
∂L

∂y′
− L = constant .

The Hamiltonian first integral is (y′)2 + k2y2 = constant [4]
which gives y = A sin(kx + B) (or some equivalent) and the conditions give B = 0, [4]
A = 5 whence y = 5 sin(kx). [2]
This part can also be done using the Euler-Lagrange equation itself.
Comment: this one is deliberately slightly easy because students found this a hard topic.
Those who tried it did quite well, though the proofs were sometimes not well expressed.

B6. {First part is rearranged bookwork. Second part is unseen but on similar lines to
problems in lectures and coursework.}

(a) Solving the S equation with λ = −m2 gives S = A sinh(mφ) + B cosh(mφ), and
no such function has S(0) = S(2π) (except the trivial one S = 0). Hence λ ≥ 0.

[3]

(b) For λ = m2 > 0, S = A cos(mφ) + B sin(mφ) and R = Cρm + Dρ−m.
For λ = 0, S = Aφ + B and R = C ln ρ + D. [6]

In the problem, writing 4 cos2 φ = 2(cos(2φ) + 1) we see that only terms with m = 0,
m = 2 and m = 3 occur in the boundary conditions. So we can guess this is all we
need in the answer. [3]
Boundedness at the origin implies we do not need the ρ−m or ln ρ terms. [2]
Single-valuedness eliminates the Aφ terms, [1]
so we have A0 + ρ2(A2 cos(2φ) + B2 sin(2φ)) + ρ3(A3 cos(3φ) + B3 sin(3φ))
and matching with the given values 2+2 cos(2φ)+sin(3φ) at ρ = 2 gives us B2 = A3 = 0,
A0 = 2, A2 = 1

2
, B3 = 1

8
, so

Φ = 2 + 1
2
ρ2 cos(2φ) + 1

8
ρ3 sin(3φ).

[5]
Comment: almost nobody tried this, probably because sinilar questions had not appeared
for a year or two. I hope students in later years will do more practice on this part of
the course.

[Next question overleaf ]
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KEY OBJECTIVES of the course
The student should

1. Know the important properties of Fourier series and be able to compute coefficients.

2. Be able to write down, in simple cases, variational integrals for curves y(x) and derive
and solve their Euler-Lagrange equations.

3. Be able to do simple line and surface integrals. (E.g. Evaluate
∫
F · dr for a given

vector field, with the path given in either parametric or non-parametric form.)

4. Be able to do simple manipulations involving gradient, divergence, and curl, and un-
derstand their geometrical/physical meaning.

5. Understand Stokes’ theorem and the divergence theorem and be able to do simple
problems applying these.

6. Be able to do simple manipulations in index notation, and switch between vector and
index notation wherever necessary.

7. Understand three-dimensional cartesian, cylindrical, and spherical polar coordinates
geometrically, and be able to express lines, surfaces, and volumes in coordinate or
vector notation as appropriate.

8. Understand the variable-separation technique for PDEs and be able to do simple so-
lution problems with Laplace’s equation in (at least) 2D Cartesian coordinates.

[End of examination paper]


