## MST121 – 2004 Solutions

**<u>Qn.1</u>** (a) 6, 4.7, 3.4, 2.1 (b) Arithmetic Progression

$$x_n = 7.3 - 1.3n$$
 (n=1,2...)

(c) -44.7

(d)  $x_n$  becomes arbitrarily large and negative.

**Qn.2** (a) (3,2) (b) gradient of MN is -1/2 = grad AB(c) gradient of AC = 2, gradAC x grad AB = -1 (d) y = 2x-4, cuts *x*-axis at (2,0)

<u>**Qn.3**</u> (a)  $(x - 4)^2 + (y - 1)^2 = 25$  (b) (4,1), 5 (c) (6,-2) ;  $(x - 6)^2 + (y + 2)^2 = 25$ 

<u>**Qn.4**</u> (a) b =4 (b) a=3 (c) add a mirror image in the x-axis (d) increasing, one-to-one

**Qn.5** (a) 5x150 + 3x75x151 = 34725(b) -1/3 since *n* terms dominate for large *n*. (c) since r = 2.3, long-term behaviour of  $P_n$  is a 2-cycle with one value above E = 500, and the other below 500.

**Qn.6** (a) (i) AB does not exist  
(ii) BC = 
$$\begin{pmatrix} 8 & 4 \\ -6 & -3 \end{pmatrix}$$
  
(b) (i)  $\frac{1}{5} \begin{pmatrix} 1 & 3 \\ 1 & -2 \end{pmatrix}$   
(ii) det(C) = 0, so C<sup>-1</sup> does not exist

**<u>Qn.7</u>** (a)  $-3\mathbf{i} - 8\mathbf{j}$  (b)  $\sqrt{73} = 8.5$  (to 1 d.p.), Direction is  $-110.6^{\circ}$  to 1 d.p. or -1.9 radians. (Equivalently the answer could be given as an anti-clockwise angle from the zero line of 249.4° or 4.4 radians.)



## **<u>Qn.9</u>** (a)

 $f'(x) = 3x^2 - 6x - 9 = 3(x - 3)(x + 1)$ so stationary points exist at x = -1 and x = 3. (b) f''(x) = 6x - 6 which is -12 for x = -1, so f has a maximum 12 for x = 3, so f has a minimum



Qn.10 (a) 
$$f'(x) = -\frac{4}{x^2} + 3\sin(6x)$$
  
(b)  $-3e^{-t/3} + 2t^{5t/2} + c$ 

**<u>On.11</u>** (a) Solve  $10 = a/2 + v_0$  $16 = 8a + 4v_0$ (b) ds/dt = at + v<sub>0</sub>. Max distance is attained when ds/dt=0, i.e. when t = -v<sub>0</sub>/a = 3, at which

**Qn.12**  $0.75 = e^{-100k}$  so  $k = -(\ln(0.75))/100 = 0.0028768$ For half-life solve  $0.5 = e^{-0028768t}$  $t = -(\ln(0.5))/k = 241$  years

time s = 18 m.

**Qn.13** (a) There are 3 ways of obtaining a 4 out of 36 possibilities, viz, (1,3), (2,2), (3,1), so probability =1/12. (b)  $(11/12)^5 = 0.647$  (c) 1 - 0.647 = 0.353 (d) mean number of rolls is 1/(1/12) = 12

<u>**Qn.14**</u> (a) Mean = 20, s.d. =  $\frac{9.5}{\sqrt{10}}$  = (20, 3.00) (b) 95% Conf Int. is (14.1, 25.9)

**Qn.15** (a) ) 
$$H_0: m_0 = m_1$$
  
 $H_1: m_0 \neq m_1$ 

 $\mathbf{m} =$  mean consumption without additive

 $\mathbf{m}$  = mean consumption with additive

(b) The test statistic is 7.32 which is greater than 1.96, so reject the null hypothesis at the 5% significance level.

(c) It is very likely that the additive improves consumption.

**<u>On.16</u>** (a) 0.187x170 - 7.19 = 24.6(b) residual = data - fit = 24 - 23.665 = 0.335

(c) Obtain the least squares fit line for the regression of x on y (as opposed to y on x).

**<u>Qn.17</u>** (a) Scale *y* by a factor of 2, then translate 1 to the right and 5 down.



- (c) y = |x| + 2 becomes y = -x + 2 to the left of the y-axis.
- (d) (i) (3.27, 5.27) as given (ii) Solve y = 2 - xand  $y = 2(x - 1)^2 - 5$  to give (-1, 3)

$$\frac{\textbf{Qn.18}}{A_{n+1}} = 0.89 \text{ J}_n + 0.07 \text{ A}_n \\ A_{n+1} = 0.06 \text{ J}_n + 0.95 \text{ A}_n \\ \textbf{(b)} \quad \textbf{(i)} \quad 0.07 \quad \textbf{(ii)} \quad 0.05$$

(i) 
$$\begin{pmatrix} Adults \\ Juv'niles \end{pmatrix} = \begin{pmatrix} 0.89 & 0.07 \\ 0.06 & 0.95 \end{pmatrix} \begin{pmatrix} 5.7 \\ 20.8 \end{pmatrix} = \begin{pmatrix} 6.529 \\ 20.102 \end{pmatrix}$$
  
Total = 26.631M

(ii) propn. of juveniles = 0.245

(d) (i) population size = 22.38M(ii) propn. of juveniles = 0.407

**Qn.19** (a) (i) use the chain rule  
(ii) Product Rule gives  

$$q'(x) = e^{-x^2/8} + xp'(x) = e^{-x^2/8}(1 - \frac{1}{4}x^2)$$
  
(iii) limits of integration are from -1 to 4.  
 $\int_{-1}^{4} f(x)dx = \int_{-1}^{4} (4 + 3x - x^2)e^{-x^2/8}dx$   
 $= \int_{-1}^{4} 4q'(x)dx - 12\int_{-1}^{4} p'(x)dx$   
 $= [4q(x) - 12p(x)]_{-1}^{4}$   
 $= 4\{q(4) - 3p(4) + 3p(-1) - q(-1)\}$   
 $= 4\{e^{-2} + 4e^{-\frac{1}{8}}\}$   
 $= 14.66$  to 2 d.p.  
(i)  $x^{1}(x) = \frac{1 - \ln(ax)}{1 - \ln(ax)}$ 

(i) 
$$r(x) = \frac{x^2}{x^2}$$
  
(ii) if  $y = r(x)$ ,  $\frac{1 - xy}{x^2} = \frac{1 - \ln(ax)}{x^2}$   
so general solution is  $y = r(x)$ .  
 $y(1)=3 \text{ so } 3 = \ln(a)$ ,  
so, using  $\ln(ax)=\ln(a) + \ln(x)$ , particular  
solution is  $y(x) = \frac{\ln(3x)}{x}$ 

**<u>Qn.20</u>** (a) Right-skew because it tails off to the right.

(b) (i) sketch is something like



(c) (i) 
$$178.4 \pm 1.96 \times \frac{6.92}{\sqrt{60}}$$
  
= (176.65, 180.15)

"95% confidence interval." means that 95% <u>all</u> such computed confidence intervals contain the true but unknown mean, whereas 5% do not. (see also p. 41 in Computer Book D),