MST121 - 2004 Solutions

Qn. 1 (a) 6, 4.7, 3.4, 2.1
(b) Arithmetic Progression
$x_{n}=7.3-1.3 n \quad(n=1,2 \ldots)$
(c) -44.7
(d) x_{n} becomes arbitrarily large and negative.

Qn. 2 (a) (3,2)
(b) gradient of MN is $-1 / 2=\operatorname{grad} \mathrm{AB}$
(c) gradient of $\mathrm{AC}=2, \operatorname{gradAC} x \operatorname{grad} \mathrm{AB}=-1$
(d) $\mathrm{y}=2 \mathrm{x}-4$, cuts x-axis at $(2,0)$

Qn. 3 (a) $(x-4)^{2}+(y-1)^{2}=25$ (b) $(4,1), 5$
(c) $(6,-2) ;(x-6)^{2}+(y+2)^{2}=25$

Qn. 4 (a) $b=4$ (b) $a=3$
(c) add a mirror image in the x -axis
(d) increasing, one-to-one

Qn. 5 (a) $5 \times 150+3 \times 75 \times 151=34725$
(b) $-1 / 3$ since n terms dominate for large n.
(c) since $\mathrm{r}=2.3$, long-term behaviour of P_{n} is a 2-cycle with one value above $\mathrm{E}=500$, and the other below 500 .

Qn. 6 (a) (i) AB does not exist
(ii) $\mathrm{BC}=\left(\begin{array}{cc}8 & 4 \\ -6 & -3\end{array}\right)$
(b) (i) $\frac{1}{5}\left(\begin{array}{cc}1 & 3 \\ 1 & -2\end{array}\right)$
(ii) $\operatorname{det}(\mathrm{C})=0$, so C^{-1} does not exist

Qn. 7 (a) $-3 \mathbf{i}-8 \mathbf{j}$ (b) $\sqrt{73}=8.5$ (to 1 d.p.),
Direction is -110.6^{0} to 1 d.p. or -1.9 radians. (Equivalently the answer could be given aa an anti-clockwise angle from the zero line of 249.4^{0} or 4.4 radians.)

Qn. 8 (a)
(b)

$$
\frac{G}{\sin 50^{\circ}}=\frac{5}{\sin 85^{\circ}}
$$

$$
\mathrm{G}=3.84
$$

Qn. 9 (a)

$$
f^{\prime}(x)=3 x^{2}-6 x-9=3(x-3)(x+1)
$$

so stationary points exist at $\mathrm{x}=-1$ and $\mathrm{x}=3$.
(b) $f^{\prime \prime}(x)=6 x-6$ which is
-12 for $\mathrm{x}=-1$, so f has a maximum
12 for $\mathrm{x}=3$, so f has a minimum

Qn. 10 (a) $f^{\prime}(x)=-\frac{4}{x^{2}}+3 \sin (6 x)$
(b) $-3 e^{-t / 3}+2 t^{5 t / 2}+c$

Qn. 11 (a) Solve $10=\mathrm{a} / 2+\mathrm{v}_{0}$ $16=8 a+4 v_{0}$
(b) $\mathrm{ds} / \mathrm{dt}=\mathrm{at}+\mathrm{v}_{0}$. Max distance is attained when $d s / d t=0$, i.e. when $t=-v_{0} / a=3$, at which time $\mathrm{s}=18 \mathrm{~m}$.

Qn. $12 \quad 0.75=e^{-100 k}$ so
$k=-(\ln (0.75)) / 100=0.0028768$
For half-life solve $0.5=e^{-0028768 t}$

$$
t=-(\ln (0.5)) / k=241 \text { years }
$$

Qn. 13 (a) There are 3 ways of obtaining a 4 out of 36 possibilities, viz, $(1,3),(2,2),(3,1)$, so probability $=1 / 12$.
(b) $(11 / 12)^{5}=0.647$
(c) $1-0.647=0.353$
(d) mean number of rolls is $1 /(1 / 12)=12$

Qn. 14 (a) Mean $=20$, s.d. $=\frac{9.5}{\sqrt{10}}=(20,3.00)$
(b) 95% Conf Int. is $(14.1,25.9)$

Qn. 15 (a)) $H_{0}: \mu_{0}=\mu_{1}$

$$
\mathrm{H}_{1}: \mu_{0} \neq \mu_{1}
$$

$\mu_{0}=$ mean consumption without additive
$\mu_{1}=$ mean consumption with additive
(b) The test statistic is 7.32 which is greater than 1.96 , so reject the null hypothesis at the 5% significance level.
(c) It is very likely that the additive improves consumption.

Qn. 16 (a) $0.187 \times 170-7.19=24.6$
(b) residual $=$ data - fit

$$
=24-23.665=0.335
$$

(c) Obtain the least squares fit line for the regression of x on y (as opposed to y on x).

Qn. 17 (a) Scale y by a factor of 2 , then translate 1 to the right and 5 down.

(ii) $(x, y+2)$
(c) $y=|x|+2$ becomes $y=-x+2$ to the left of the y-axis.
(d) (i) $(3.27,5.27)$ as given
(ii) Solve $y=2-x$
and $\mathrm{y}=2(\mathrm{x}-1)^{2}-5$ to give $(-1,3)$
Qn. 18 (a) $\mathrm{J}_{\mathrm{n}+1}=0.89 \mathrm{~J}_{\mathrm{n}}+0.07 \mathrm{~A}_{\mathrm{n}}$ $\mathrm{A}_{\mathrm{n}+1}=0.06 \mathrm{~J}_{\mathrm{n}}+0.95 \mathrm{~A}_{\mathrm{n}}$
(b) (i) 0.07 (ii) 0.05
(c)
(i) $\binom{$ Adults }{ Juv' niles }$=\left(\begin{array}{cc}0.89 & 0.07 \\ 0.06 & 0.95\end{array}\right)\binom{5.7}{20.8}=$

$$
\binom{6.529}{20.102}
$$

Total $=26.631 \mathrm{M}$
(ii) propn. of juveniles $=0.245$
(d) (i) population size $=22.38 \mathrm{M}$
(ii) propn. of juveniles $=0.407$

Qn. 19 (a) (i) use the chain rule
(ii) Product Rule gives
$q^{\prime}(x)=e^{-x^{2} / 8}+x p^{\prime}(x)=e^{-x^{2} / 8}\left(1-\frac{1}{4} x^{2}\right)$
(iii) limits of integration are from -1 to 4 .
$\int_{-1}^{4} f(x) d x=\int_{-1}^{4}\left(4+3 x-x^{2}\right) e^{-x^{2} / 8} d x$
$=\int_{-1}^{4} 4 q^{\prime}(x) d x-12 \int_{-1}^{4} p^{\prime}(x) d x$
$=[4 q(x)-12 p(x)]_{-1}^{4}$
$=4\{q(4)-3 p(4)+3 p(-1)-q(-1)\}$
$=4\left\{e^{-2}+4 e^{-1 / 8}\right\}$
$=14.66$ to $2 \mathrm{~d} . \mathrm{p}$.
(i) $r^{\prime}(x)=\frac{1-\ln (a x)}{x^{2}}$
(ii) if $y=r(x), \frac{1-x y}{x^{2}}=\frac{1-\ln (a x)}{x^{2}}$
so general solution is $y=r(x)$.
$y(1)=3$ so $3=\ln (a)$,
so, using $\ln (a x)=\ln (a)+\ln (x)$, particular
solution is $\quad y(x)=\frac{\ln (3 x)}{x}$

Qn. 20 (a) Right-skew because it tails off to the right.
(b) (i) sketch is something like

(c) (i) $178.4 \pm 1.96 \times \frac{6.92}{\sqrt{60}}$

$$
=(176.65,180.15)
$$

" 95% confidence interval." means that 95% all such computed confidence intervals contain the true but unknown mean, whereas 5% do not. (see also p. 41 in Computer Book D),

