Cuestion 5
We ghall show that sup E = 1.
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By the Archimedean Property of B, there 15 an mteger N such that
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Hence there iz an element of E greater than m'. Henee 1 iz the feast upper bound
of F.

Cuestion G
(2} Dividing through by the dominant term !, we obtain
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Since {n?fn!} and {#*/n!} are basic null sequences, we deduce by the Combi-
nation Bules that
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{b) Since {6"/n!} & a basic null sequence with positive terms, {n!/6°} tends to
mifinity, by the Reciprocal Rule,

Hence {n!/6"} iz unbounded,
and 50 1% i comvergent.,

Caestion T
{a} Since
0 sinflfm) <1, forn =12 ...,
we have
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E = iz a basic convergent series,
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This, by the Chuiparison Tet,
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{This fact i needed in what follows. }

for correct hypoihess

Tor inequalitics

for nas of Archimedean
FProperty

for dividing by n!

for mentioning the relevant rbe



