Question 10

- (4 marks) Similar to Unit 1, Example 3.3. **(i)**
- h(3, 0) = f(3) = 4.(a)
- h(3, 0+1) = g(3, 0, h(3, 0)) = add (5, 1) = 6.**(b)** h(3, 1 + 1) = g(3, 1, h(3, 1)) = add(7, 2) = 9.
- (ii) (a) (2 marks)

See 2003 Qu. 10 (ii)(a) where it was worth 3 marks.

(ii) (b) (2 marks)

See 2003 Qu. 10 (ii)(b).

(iii) (3 marks)

$$(x_1, x_2)$$
 where $x_1 \le x_2$. [[$y = 0$]]
 (x_1, x_2) where $x_2 \le 9$ and $x_1 > x_2$. [[$y > 0$]

 (x_1, x_2) where $x_2 \le 9$ and $x_1 > x_2$. [[y > 0]]

Question 11

(i) (3 marks)

Topic not covered in post-2003 course.

See 2002 Qu. 11 (ii)(a).

$$Min(x, y) = x \div (x \div y).$$

Min is a primitive recursive function since it is defined by substitution using the primitive recursive function $\dot{-}$.

(ii)(c) $(3\frac{1}{2} \text{ marks})$

Define the functions

$$g_1(x_1, x_2, x_3) = 2x_2 = \text{mult}(2, x_2),$$

 $g_2(x_1, x_2, x_3) = x_1^{x_3} = \exp(x_1, x_3),$
 $g_3(x_1, x_2, x_3) = 5 = C_5^3(x_1, x_2, x_3),$

and the relations

$$R_1(x_1, x_2, x_3) \Leftrightarrow Min(x_1, x_3) = 30 + x_2,$$

 $R_2(x_1, x_2, x_3) \Leftrightarrow 3x_1 + 2x_2 + x_3 \le 100,$
 $R_3(x_1, x_2, x_3) \Leftrightarrow \text{not } R_1(x_1, x_2, x_3) \text{ and not } R_2(x_1, x_2, x_3).$

Then we can write

$$f(x_1, x_2, x_3) = \begin{cases} g_1(x_1, x_2, x_3) & \text{if } R_1(x_1, x_2, x_3) \\ g_2(x_1, x_2, x_3) & \text{if } R_2(x_1, x_2, x_3) \\ g_3(x_1, x_2, x_3) & \text{if } R_3(x_1, x_2, x_3) \end{cases}$$

As g_1 , g_2 , and g_3 can be written the primitive recursive functions mult, exp and C_5^3 , using constants then g_1 , g_2 , and g_3 are primitive recursive functions.

The characteristic function of the relation R_1 , $\chi_{R_1}(x_1, x_2, x_3) = \chi_{eq}(Min(x_1, x_3), 30 + x_2)$. As χ_{R_1} is obtained by substitution from the primitive recursive functions χ_{eq} , Min and add using constants, then it is a primitive recursive function. Hence R_1 is a primitive recursive relation.

The characteristic function of the relation R_2 , $\chi_{R_2}(x_1, x_2, x_3) = \chi_{\leq}(3x_1 + 2x_2 + x_3, 100)$. As χ_{R_2} is obtained by substitution from the primitive recursive functions χ_{\leq} , mult and add using constants, then it is a primitive recursive function. Hence R_2 is a primitive recursive relation.

Using the result of Unit 2 Problem 1.10, then R_3 is also a primitive recursive relation. From the definition of R_3 it follows that the set of relations R_1 , R_2 , and R_3 are exhaustive.

If the relation R_1 holds then $x_1 \ge 30 + x_2$ and $x_3 \ge 30 + x_2$. Therefore $3x_1 + 2x_2 + x_3 \ge 120 + 6x_2$. Since $x_2 \ge 0$ then R_2 does not hold so R_1 and R_2 are mutually exclusive. From the definition of R_3 , if the relation R_3 holds then neither R_1 or R_2 holds. Therefore R_1 , R_2 and R_3 are mutually exclusive.

Since all the conditions required for the use of Theorem 1.5 of Unit 2 hold then it follows that f is primitive recursive.

Question 12

(i) $(2\frac{1}{2} \text{ marks})$

Let
$$c(x, y) = \overline{sg} (exp(2, y) - x)$$
.

c is primitive recursive since it is defined by substitution using the primitive recursive functions $\frac{1}{2}$ signals, $\frac{1}{2}$ and explusing constants.

(ii) (3 marks)

See 2003 Qu. 12 (ii)

(iii) (4 marks)

Define the function lo by lo(x) = g(x, x) where

$$g(x, v) = \begin{cases} \sum_{z=1}^{v} c(x, z) & \text{if } v \ge 1\\ 0 & \text{if } v = 0 \end{cases}$$

lo(0) = g(0, 0) = 0 as required.

If x > 0 then $lo(x) = g(x, x) = \sum_{z=1}^{x} c(x, z)$. Since $2^x > x$ then we must eventually come to a value of z where $2^z > x$. As 1 is added to the sum for each value of z where $2^z \le x$ then the sum will be the value required.

Since c is a primitive recursive function of 2 variables then by part (ii) we know that g is also primitive recursive. Therefore, using the result of Unit 2 Problem 1.4, lo is also primitive recursive.

(iv) (1½ marks)

$$k(x) = \exp(2, \log(x)).$$

k is primitive recursive since it is defined by substitution using the primitive recursive functions lo and exp using constants.

QUESTION 13

(i) (3 marks)

Let θ be the sub-formula x = 0; ϕ be the sub-formula $\forall x \ x = 0$; ψ be the sub-formula $\exists x \ (x = 0 \lor \forall x \ x = 0)$.

The given formula can be written as $(((\theta \lor \phi) \to \psi) \to (\neg \psi \to \neg \theta))$

θ	ф	Ψ	$(((\theta \lor \phi) \to \psi) \to (\neg \psi \to \neg \theta))$
1	1	1	1 1 1 1 1 1 01 1 01
1	1	0	1 1 1 0 0 1 10 0 01
1	0	1	1 1 0 1 1 1 01 1 01
1	0	0	1 1 0 0 0 1 10 0 01
0	1	1	0 1 1 1 1 1 01 1 10
0	1	0	01100110110
0	0	1	0 0 0 1 1 1 01 1 10
0	0	0	0 0 0 1 0 1 10 1 10
			(2) (3) (4) (2) (3) (2)

Since column 4 is all ones then the formula takes the truth value 1 under all interpretations.

(ii)(b) (2½ marks)

Line	1	2	3	4	5	6	7	8	9
Ass.	1	2	1	4	1,2	1,2	1,4	1	1,4

(ii)(b) (½ mark)

$$(((\phi \rightarrow \theta) \& (\theta \& \psi)) \rightarrow (\phi \rightarrow \theta))$$

(ii)(c) (2 marks)

(A) **NO** (B) **YES**.

(iii) 3 marks

This solution has been copied from Unit 5 Section 3.2.

1 (1)
$$\exists v \ v = 0'$$
 Ass
2 (2) $v = 0'$ Ass
1 (3) $v = 0'$ EH, 2
1 (4) $\forall v \ v = 0'$ UI, 3

QUESTION 14

[[Note that - is used instead of \neg in papers prior to 2004.]]

(i) (2 marks)

$$\exists \mathbf{z} (\forall x \exists y (x + t) = z \& \forall \mathbf{t}(\mathbf{x}.t) = y)$$

- (a) NO. [[z becomes bound]] (b) NO. [[t becomes bound]]
- (c) YES

(3 marks) (ii) (a)

-	(1)	$(\mathbf{x}.\mathbf{x}) = (\mathbf{x}.\mathbf{x})$	II
2	(2)	x = y	Ass
2	(3)	(x.y) = (y.x)	Sub, 1, 2
-	(4)	$(x = y \rightarrow (x.y) = (y.x))$	CP, 3
-	(5)	$\forall y(x = y \rightarrow (x.y) = (y.x))$	UI, 4
-	(6)	$\forall x \forall y (x = y \rightarrow (x.y) = (y.x))$	UI, 5

(ii) (b) (6 marks)

1	(1)	$(\phi \& \forall x(\neg \phi \lor \psi))$	Ass
2	(2)	$\exists x \neg \theta$	Ass
3	(3)	$\neg \theta$	Ass
4	(4)	$\forall x(\psi \rightarrow \theta)$	Ass. Contradiction
4	(5)	$(\psi \rightarrow \theta)$	UE, 4
3,4	(6)	$\neg \psi$	Taut, 3, 5
1	(7)	$\forall x(\neg \phi \lor \psi)$	Taut, 1
1	(8)	$(\neg \phi \lor \psi)$	UE, 7
1,3,4	(9)	¬ф	Taut, 6, 8
1	(10)	ф	Taut, 1
1,3,4	(11)	$(\phi \& \neg \phi)$	Taut, 9, 10
1,2,4	(12)	$(\phi \& \neg \phi)$	EH, 11
1,2	(13)	$(\forall x(\psi \rightarrow \theta) \rightarrow (\phi \& \neg \phi))$	CP, 12
1,2	(14)	$\neg \forall x(\psi \rightarrow \theta)$	Taut, 13
1	(15)	$(\exists x \neg \theta \rightarrow \neg \forall x(\psi \rightarrow \theta))$	CP, 14

The assumption that x does not occur free in ϕ is required for the use of EH on line (12). [[Note that assumption 1 also contains ϕ .]]

QUESTION 15

(i) [Both sides of the equation look as if they equal (0 + x).]]

- (1)
$$(\mathbf{0} + (\mathbf{x} + \mathbf{0})) = (\mathbf{0} + (\mathbf{x} + \mathbf{0}))$$
 II
2 (2) $\forall \mathbf{x} (\mathbf{x} + \mathbf{0}) = \mathbf{x}$ Ass. Q4
2 (3) $(\mathbf{x} + \mathbf{0}) = \mathbf{x}$ UE, 2
2 (4) $(\mathbf{0} + (\mathbf{x} + \mathbf{0})) = (\mathbf{0} + \mathbf{x})$ Sub, 1, 3
- (5) $((\mathbf{0} + \mathbf{0}) + \mathbf{x}) = ((\mathbf{0} + \mathbf{0}) + \mathbf{x})$ II
2 (6) $(\mathbf{0} + \mathbf{0}) = \mathbf{0}$ UE, 2
2 (7) $(\mathbf{0} + \mathbf{x}) = ((\mathbf{0} + \mathbf{0}) + \mathbf{x})$ Sub, 5, 6
2 (8) $(\mathbf{0} + (\mathbf{x} + \mathbf{0})) = ((\mathbf{0} + \mathbf{0}) + \mathbf{x})$ Sub, 4, 7
2 (9) $\forall \mathbf{x} (\mathbf{0} + (\mathbf{x} + \mathbf{0})) = ((\mathbf{0} + \mathbf{0}) + \mathbf{x})$ UI, 8

As the assumption is axiom Q4 of Q then the sentence is a theorem of Q.

(ii) [[If this is a theorem then so is (iii). Therefore unlikely to be one.]]

In
$$\mathcal{N}^{**}$$
 let $x = \alpha$, and $y = \alpha$. Then
$$(x.(y.x)) = (\alpha.(\alpha.\alpha)) = (\alpha.\beta) = \beta$$
, and
$$((x.y).x) = ((\alpha.\alpha).\alpha) = (\beta.\alpha) = \alpha$$
.

All the axioms of Q hold in \mathscr{N}^{**} . As $\forall x \forall y(x.(y.x)) = ((x.y).x)$ does not hold in the interpretation \mathscr{N}^{**} then, it follows by the Correctness Theorem, the sentence is not a theorem of Q.

(iii)

- (1)
$$(\mathbf{0}.(\mathbf{y}.\mathbf{0})) = (\mathbf{0}.(\mathbf{y}.\mathbf{0}))$$
 II

2 (2) $\forall \mathbf{x} (\mathbf{x}.\mathbf{0}) = \mathbf{0}$ Ass. Q6

2 (3) $(\mathbf{y}.\mathbf{0}) = \mathbf{0}$ UE, 2

2 (4) $(\mathbf{0}.(\mathbf{y}.\mathbf{0})) = (\mathbf{0}.\mathbf{0})$ Sub, 1, 3

2 (5) $(\mathbf{0}.\mathbf{0}) = \mathbf{0}$ UE, 2

2 (6) $(\mathbf{0}.(\mathbf{y}.\mathbf{0})) = \mathbf{0}$ Sub, 4, 5

- (7) $((\mathbf{0}.\mathbf{y}).\mathbf{0}) = ((\mathbf{0}.\mathbf{y}).\mathbf{0})$ II

2 (8) $((\mathbf{0}.\mathbf{y}).\mathbf{0}) = ((\mathbf{0}.\mathbf{y}).\mathbf{0})$ UE, 2

2 (9) $\mathbf{0} = ((\mathbf{0}.\mathbf{y}).\mathbf{0})$ Sub, 7, 8

2 (10) $(\mathbf{0}.(\mathbf{y}.\mathbf{0})) = ((\mathbf{0}.\mathbf{y}).\mathbf{0})$ Sub, 7, 8

2 (11) $\forall \mathbf{y} (\mathbf{0}.(\mathbf{y}.\mathbf{0})) = ((\mathbf{0}.\mathbf{y}).\mathbf{0})$ UI, 10

2 (12) $\exists \mathbf{x} \forall \mathbf{y} (\mathbf{x}.(\mathbf{y}.\mathbf{x})) = ((\mathbf{x}.\mathbf{y}).\mathbf{x})$ EI, 11

As the assumption is axiom Q6 of Q then the sentence is a theorem of Q.

END OF PART II SOLUTIONS