MS221-2005 Solutions

Qn. 1 (a) $\mathrm{t}_{7,-3}$ (see p. 48 in Handbook)
(b) $(x-5, y+2)$
(c) $\mathrm{t}_{2,-1}:(\mathrm{x}, \mathrm{y}) \mid->(\mathrm{x}+2, \mathrm{y}-1)$

Qn. 2 (a) curve is $y^{2}=20 x$; parabola
(b) (i) $e=1$, (ii) $(5,0)$ (iii) $x=-5$

Qn. 3 (a) $19 / 5$ (b) $u_{n}=3+5\left(-\frac{2}{5}\right)^{n}$
(c) tends to 3 in the long term

$$
\text { since }{ }^{\left(-\frac{2}{5}\right)^{n} \rightarrow 0} \cdot(0<|-2 / 5|<1)
$$

Qn. 4 (a) Solve $f(x)=x$ which is equivalent to solving $x^{2}+3 x-10=0$, i.e. $(x+5)(x-2)=0$, giving fixed points $x=-5$ and $x=2$.
(b) $f^{\prime}(x)=1 / 2 x+7 / 4$ so

$$
\begin{aligned}
& \mathrm{f}^{\prime}(-5)=-3 / 4 \quad \text { (attracting) } \\
& \mathrm{f}^{\prime}(2)=11 / 4 \quad \text { (repelling) }
\end{aligned}
$$

(c) f does not have a 2-cycle. If it did then $f o f$ would have four intersections with $\mathrm{y}=\mathrm{x}$, two in common with f, and the other two at the points of the 2-cycle of f.

Qn. $5 \quad D=\left(\begin{array}{cc}(-3)^{5} & 0 \\ 0 & 2^{5}\end{array}\right)$
$\mathbf{A}^{5}=\left(\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right)\left(\begin{array}{cc}-243 & 0 \\ 0 & 32\end{array}\right)\left(\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right)=$
$\left(\begin{array}{cc}-2168 & 7700 \\ -550 & 1957\end{array}\right)$

Qn. 6 (a) (i) $(0,0),(1,0),(0,1),(1,1)$
become $(0,0),(0,1),(-1,-2),(-1,-1)$
(b) (i) $\mathbf{B}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(ii) $\mathbf{A}=\mathbf{B}^{-1} \mathbf{M}=\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)$
(iii) An x -shear with parameter -2 .

Qn. 7 (a) $1+2 x \cdot \arctan x$
(b) $-\cot x$

Qn. 8 (a) Integral $=\frac{2}{5} x^{5 / 2} \ln (4 x)-\frac{2}{5} \int x^{5 / 2}\left(\frac{1}{x}\right) d x$

$$
=\frac{2}{5} x^{5 / 2} \ln (4 x)-\frac{4}{25} x^{5 / 2}+c
$$

(b) $u=\exp (6+\cos (2 x)) ; d u=-2 \sin (2 x) d x$ Integral $=\int-\frac{1}{2} e^{u} d u=-\frac{1}{2} \exp (6+\cos 2 x)+c$

Qn. 9 (a) (i) $x-1 / 2 x^{3}+1 / 24 x^{5}$ (ii) $1 / 3 x^{3}-1 / 30 x^{5}+1 / 840 x^{7}$
(b) $x^{2}-1 / 6 x^{4}+1 / 120 x^{6}$
(c) $x \sin (x)$

Qn. 10 (a) modulus $=1$, argument $=\frac{2 \pi}{3}$
(b) $\left\langle 1, \frac{2 \pi}{3}\right\rangle$
(c) $\bar{w}=-1 / 2-\sqrt{3} / 2 i$

$$
w^{2}=(1 / 4-3 / 4)-\sqrt{3} / 2 i=\bar{w}
$$

(d) $w^{3}=1$ because $3 \times \frac{2 \pi}{3}=2 \pi$
(e) $\left\langle r, \theta+\frac{2 \pi}{3}\right\rangle$

$$
\text { Qn.11 } \begin{array}{rlrl}
43 & =2.18+7 & 1 & =4-1.3 \\
18 & =2.7+4 & & =4-(7-1.4) \\
7 & =1.4+3 & & =2.4-1.7 \\
4 & =1.3+1 & & =2(18-2.7)-1.7 \\
\text { then go to } & & =2.18-5.7 \\
\text { next col. }-> & & =2.18-5(43-2.18) \\
& & =-5.43+12.18 \\
& & =12.18 \text { in } \bmod 43
\end{array}
$$

so inverse is 12 .

Qn. 12 (a) $c(n) \wedge d(n)$
(b) (i) 30 and 60 are simple examples.
(ii) $d(n) \Rightarrow(a(n) \wedge c(n))$

If n is divisible by 24 then n is divisible by 6 and is also divisible by 15 .

Qn. 13 See Handbook p. 49
(a) $\frac{1}{2} \arctan \frac{-14 \sqrt{2}}{-7}=\frac{1}{2} \arctan 2 \sqrt{2}$
that is, $\tan 2 \theta=2 \sqrt{2}$
(b) Simplify $\frac{2 t}{1-t^{2}}=2 \sqrt{2}$ to form the quadratic $t^{2} \sqrt{2}+t-\sqrt{2}=0$. Either factorise this as $(t \sqrt{2}-1)(t+\sqrt{2)}=0$, so that the positive root is $1 / \sqrt{2}$ and $\tan \theta=1 / \sqrt{2}$, or simply substitute the given answer.
(c) $\sin \theta=\sqrt{\frac{1}{3}} \quad \cos \theta=\sqrt{\frac{2}{3}}$
(d) $A^{\prime}=30\left(\frac{2}{3}\right)-14 \sqrt{2}\left(\frac{1}{\sqrt{3}}\right) \sqrt{\frac{2}{3}}+37\left(\frac{1}{3}\right)=23$

$$
C^{\prime}=30\left(\frac{1}{3}\right)+14 \sqrt{2}\left(\frac{1}{\sqrt{3}}\right) \sqrt{\frac{2}{3}}+37\left(\frac{2}{3}\right)=44
$$

Equation of K is $23 x^{2}+44 y^{2}=1012$.
Divide by $1012: \frac{x^{2}}{44}+\frac{y^{2}}{23}=1$ which is the equation of an ellipse in standard form.
(e) $\arctan 1 / \sqrt{2}=35.26^{\circ}$
(f) $e=\sqrt{1-\frac{23}{44}}==\sqrt{\frac{21}{44}}=\frac{1}{2} \sqrt{\frac{21}{11}}$
(g) eccentricity is invariant under rotation so answer is the same as (f).
(h) $y=x / \sqrt{2} \quad y=-x \sqrt{2}$

Qn. 14 (a) (i) $\operatorname{det}\left(\begin{array}{cc}4-k & 3 \\ 6 & -3-k\end{array}\right)=0$ $\Rightarrow \quad \mathrm{k}^{2}-\mathrm{k}-30=0 \quad(\mathrm{k}-6)(\mathrm{k}+5)=0$ eigenvalues are 6 and -5
(ii) corresponding eigenlines are
$2 \mathrm{x}-3 \mathrm{y}=0(\mathrm{k}=6)$ and $3 \mathrm{x}+\mathrm{y}=0(\mathrm{k}=-5)$. eigenvectors are $\binom{3}{2}(k=6)$ and $\binom{-1}{3} \quad(k=-5)$
(iii) $\mathbf{P}=\left(\begin{array}{cc}3 & -1 \\ 2 & 3\end{array}\right) \mathbf{D}=\left(\begin{array}{cc}6 & 0 \\ 0 & -5\end{array}\right)$
(b) see Handbook p. 63
(i) the initial point on eigenline $\mathrm{y}=-\mathrm{x}$ corresponds to a-ve eigenvalue which means that the subsequent points should be on alternate halves of the eigenline.
(ii) since $-4<-1$ the points should be on alternate sides of the eigenline $y=-1 / 7 x$ corresponding to $\mathrm{k}=2$, which they are not. (iii) since $2>1$ the points should be on the same side of the eigenline $y=-x$ corresponding to $\mathrm{k}=-4$, which they are not.

Qn. 15 (a)
(i) $1+\sin \mathrm{x}>0$ for all $x \neq(2 n+1) \frac{\pi}{2}$ $\cos \mathrm{x}>0$ for all x in domain
so $f(x)>0$ throughout domain.
(ii) $f^{\prime}(x)=\frac{1+\sin x}{\cos ^{2} x}$ which is >0 throughout the domain so $f(x)$ is an increasing function.
(b) $f(x)=\frac{(1+\sin x)(1-\sin x)}{\cos x(1-\sin x)}$
$=\frac{1-\sin ^{2} x}{\cos x(1-\sin x)}=\frac{\cos ^{2} x}{\cos x(1-\sin x)}=\frac{\cos x}{(1-\sin x)}$
If $u(x)=1-\sin x, d u=-\cos x d x$ so integral is $-d u / u=-\ln u$, hence the answer.
(c) Area $=$
$\left[-(\ln (1-\sin x)]_{-\frac{\pi}{3}}^{\frac{\pi}{3}}=\ln (1+\sqrt{3} / 2)-\ln (1-\sqrt{3} / 2)\right.$
$=\ln \left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right)=2.634$ to 3 dp .
(d) (i) $f(x)=\frac{1}{\cos x}+\frac{\sin x}{\cos x}=\sec x+\tan x$

Volume of revolution $=$
$\pi \int_{-\pi / 3}^{\pi / 3}(\sec x+\tan x)^{2} d x=\pi \int_{-\pi / 3}^{\pi / 3}\left(s^{2}+t^{2}+2 s t\right) d x$
$=\pi \int_{-\pi / 3}^{\pi / 3}\left(2 s^{2}-1+2 s t\right) d x$ using $t^{2}=s^{2}-1$
Use the table of integrals on p. 68 of the Handbook, and observe that $\sec (x) \tan (x)$ is an odd function and hence its integral between limits symmetrical about the origin is zero. The value of the integral is thus
$\pi \int_{-\pi / 3}^{\pi / 3}\left(2 \sec ^{2} x-1\right) d x=\pi[2 \tan x-x]_{-\pi / 3}^{\pi / 3}$
$=\pi((2 \sqrt{3}-\pi / 3)-(-2 \sqrt{3}+\pi / 3))$
$=\pi(4 \sqrt{3}-2 \pi / 3)=15.186$ to 3 dp .
Qn. 16 (a) the set of real numbers except $x=1$
(b) $f \circ f=\frac{\frac{x-1}{x}-1}{\frac{x-1}{x}}=\frac{-1}{x-1}$ and so can be formed.

The result is equal to $g(x)$.
(c) $f \circ g=e, k o k=e, k o g=j, g o k=h$ (rules as given in the question).
(d) Inverses are paired $(e, e),(f, g),(h, h),(k, k)$, (j,j)
(e) The group S is isomorphic to G because there are four self-inverse elements.

