MS221-2004 Solutions

Qn. 1 (a) $u_{2}=0$

$$
u_{n}=4^{n}\left(1-\frac{1}{2} n\right) \quad(n=0,1,2, . .)
$$

Qn. 2 (a) eqn. is $\frac{x^{2}}{36}-\frac{y^{2}}{9}=1$
which is a hyperbola in standard form.
(b) (i) $\mathrm{e}^{2}=1+9 / 36=5 / 4$ so $\mathrm{e}=\frac{\sqrt{5}}{2}$
(ii) Foci are $(\pm 3 \sqrt{5}, 0)$
(iii) asymptotes are $y= \pm x / 2$, points of intersection are $(6,0)$ and $(-6,0)$.

Qn.3. (a) $\mathrm{t}_{7,-5}$ (b) $(\mathrm{x}+11, \mathrm{y}-7)$
(c) $(y+5)=2(x-7)+3$, that is $\mathrm{y}=2 x-16$

Qn. 4 (a) $\sin A=\frac{\sqrt{5}}{3}, \cos A=2 / 3$
(b) $\frac{4 \sqrt{5}}{9}$

Qn. 5 (a) 126 (b) -489888
Qn. 6 (a) $A=\left(\begin{array}{cc}6 & -3 \\ -8 & 4\end{array}\right) \quad B=\left(\begin{array}{cc}1 & -1 \\ 2 & 2\end{array}\right)$
(b) Determinant of $A=0$, line is $y=-4 x / 3$
(c) $\left(\begin{array}{cc}1 & -1 \\ 2 & 2\end{array}\right) \cdot\left(\begin{array}{cc}6 & -3 \\ -8 & 4\end{array}\right)=\left(\begin{array}{cc}14 & -7 \\ -4 & 2\end{array}\right)$
(d) a flattening onto the line $y=-2 x / 7$

Qn. 7 (a) eigenvalues are 3 and 4.
(b) $D=\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right) \quad P=\left(\begin{array}{cc}1 & 3 \\ -1 & -2\end{array}\right)$
(n.b. the above answer is not unique, another possibility is
$D=\left(\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right) \quad P=\left(\begin{array}{cc}3 & -1 \\ -2 & 1\end{array}\right)$)
Qn. 8 (a) is correct. (b) is wrong because for +ve e -values, points are on the same side of the line as x_{0}.
(c) is wrong because distances along the line are in geometric progression. (see also p. 63 in Handbook).

Qn. 9

$$
\text { (a) } \sec ^{2}(\sqrt{x}) / / 2 \sqrt{x}
$$

(b) $\frac{e^{4 x}(4 \cos x+\sin x)}{\cos ^{2} x}$

Qn. 10 (a) $f(1 / 2)=1 / 2-\ln (1 / 2)<0 ; f(1)=1>0$ so $f(x)=0$ has a solution in $(0,1)$
(b) $f^{\prime}(x)=1+\frac{1}{x}$, hence $x-f\left((x) / f^{\prime}(x)=\right.$

$$
x-\frac{x(x+\ln x)}{1+x}=\frac{x(1-\ln x)}{1+x}
$$

from which the N -Raphson formula follows.
(c) $\frac{0.6(1-\ln 0.6)}{1.6}=0.567$

Qn. 11 (a) Integral $=2 e^{x / 2}(x+3)-\int 2 e^{x / 2} d x$ $=2 e^{x / 2}(x+3)-4 e^{x / 2}+c=2 e^{x / 2}(x+1)+c$
(b) $u=\ln x ; d u / d x=1 / x$;
$\mathrm{I}=\int \frac{d u}{1+u^{2}}=\arctan u=\arctan (\ln x)+c$
Qn. 12 (a) $1-\frac{1}{2} x+\frac{3}{8} x^{2}-\frac{5}{16} x^{3}$
(b) $\frac{1}{24} x^{3}-\frac{1}{16} x^{4}$
(c) $\frac{0.000008}{24}-\frac{0.00000016}{16}=3.2 \times 10^{-7}$ to 2 s.f.

Qn. 13 (a) $\sqrt{74}, 7+5 \mathrm{i}$
(b) $\frac{3+2 i}{7-5 i}=\frac{11+29 i}{74}$

Qn. 14 (a) 9
(b) any even number in $0, . .12$

Qn. 15 (a) $\left\{r_{0}, r_{\pi}, q_{0}, q_{\pi / 2}\right\}=\{I, H, X, Y\}$ say
(b)

	I	H	X	Y
I	I	H	X	Y
H	H	I	Y	X
X	X	Y	I	H
Y	Y	X	H	I

(c) group is isomorphic to the group of symmetries of the rectangle because the same reflections and rotation restore a rectangle to its original position (or alternatively because all the four elements are self-inverse).

Qn. 16 Add $(\mathrm{n}+1)^{2}$ to the given r.h.side, then factorise out $(\mathrm{n}+1)$ to give
$1 / 6(n+1)[n(2 n+1)+6(n+1)]$
The expression in the square brackets is $2 n^{2}+7 n+6$ which factorises to $(n+2)(2 n+3)$, so the new sum is $1 / 6(n+1)(n+2)(2 n+3)$ which is the ' $\mathrm{n}+1$ ' form.
$1 / 6(1.2 .3)=1^{2}$ so result is true for $\mathrm{n}=1$. Therefore it is true for all n .

Qn. 17 (a) Complete the squares:
$4(x+5)^{2}+9(y-1)^{2}=36$ and divide by 36 .
(b) $\mathrm{t}_{-5,1} \quad e=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}$
(c) $a e=\sqrt{5}$ so foci are $(-5 \pm \sqrt{5}, 0)$
(d) Directrices are $x=-5 \pm \frac{9}{\sqrt{5}}$
that is $x=-5 \pm \frac{9 \sqrt{5}}{5}=\frac{1}{5}(\pm 9 \sqrt{5}-25)$
(e)

axes of symmetry (dotted) are $\mathrm{x}=-5, \mathrm{y}=1$
(f) $\mathrm{x}=3 \cos \mathrm{t}-5 ; \mathrm{y}=2 \sin \mathrm{t}+1$

Qn. 18 (a) (i) Solve $\mathrm{g}(\mathrm{x})=0$ where $g(x)=x^{2}+2.5 x$ to give fixed points 0 and -2.5
(ii) $f^{\prime}(x)=2 x+3.5$
for $x=0 \quad\left|f^{\prime}(x)\right|>1$
for $x=-2.5\left|f^{\prime}(x)\right|>1$
so both fixed points are repelling
(b) (i) $f(f(x))=\left(x^{2}+3.5 x\right)^{2}+3.5\left(x^{2}+3.5 x\right)$ $=\mathrm{x}^{4}+7 \mathrm{x}^{3}+15.75 \mathrm{x}^{2}+12.25 \mathrm{x}$
(ii) $f(f(x))-x=x(x+2.5)(x+3)(x+1.5)$ roots -3 and -1.5 are not fixed points of $f(x)$ and so must form a 2-cycle of $f(x)$.

$$
f^{\prime}(-3)=-2.5, f^{\prime}(-1.5)=+0.5
$$

so $\left|f^{\prime}(-3) \cdot f^{\prime}(-1.5)\right|>1$, so 2 -cycle is repelling.
(c) (i) fixed point is reached exactly after one iteration.
(ii) long term behaviour is a 4-cycle.

Qn. 19 (a) (i) Use either
$u=\sqrt{9+x^{2}} \quad\left(\frac{d u}{d x}=\frac{x}{\sqrt{9+x^{2}}}\right)$
or $u=9+x^{2} \quad\left(\frac{d u}{d x}=2 x\right)$ and result follows.
(ii) $\int_{0}^{4} d x=\int_{3}^{5} d u=5-3=2$
(b) (i) integration by parts with $f(x)=x^{2}$ and $g^{\prime}(x)=\cos (2 x): I=\frac{1}{2} x^{2} \sin 2 x-\int x \sin 2 x d x$ from which result follows.
(ii) Vol. of revolution $=$

$$
\begin{aligned}
& \int_{0}^{\pi} \pi x^{2} \sin ^{2} x d x=\frac{\pi}{2} \int_{0}^{\pi} x^{2}(1-\cos 2 x) d x \\
= & \frac{\pi}{2} \int_{0}^{\pi} x^{2} d x-\frac{\pi}{2} I \\
& \int_{0}^{\pi} x^{2} d x=\frac{\pi^{3}}{3} \text { and }[I]_{0}^{\pi}=\left(\frac{\pi}{2}-0\right)
\end{aligned}
$$

$$
\text { so volume }=\frac{\pi^{4}}{6}-\frac{\pi^{2}}{4}=13.77 \text { to } 2 \text { d.p. }
$$

Qn. 20 (a) $30=1.19+11$
$19=1.11+8$
$11=1.8+3$
$8=2.3+2$

$$
3=1.2+1
$$

This is an equation containing 1 so work backwards:

$$
\begin{aligned}
1 & =3-1.2 \\
& =3-1(8-2.3)=-1.8+3.3 \\
& =-1.8+3(11-1.8)=3.11-4.8 \\
& =3.11-4 .(19-1.11)=-4.19+7.11 \\
& =-4.19+7 .(30-1.19) \\
& =-11.19 \text { in modulo } 30 \text { arithmetic } \\
& =19.19
\end{aligned}
$$

so inverse of 19 is itself.
(b) 31 is a prime number, 19 is coprime with 30 , and 30 exceeds the number of letters in the alphabet.
(c) $28^{19}=19(\bmod 31)$

$$
\begin{aligned}
13^{19} & =21(\bmod 31) \\
12^{19} & =3(\bmod 31) \\
5^{19} & =5(\bmod 31)
\end{aligned}
$$

so message is SUCCESS.
There are many 'short-cut' ways to obtain the deciphered values. One suggestion using $\mathrm{k}^{16} \cdot \mathrm{k}^{2}=\mathrm{k}^{18}$ is:

power $=1$	2	4	8	16	18	19	
28	-3	9	-12	-11	-3	4	19
13	13	14	10	7	18	4	21
12	12	-11	-3	9	-12	8	3
5	5	-6	5	-6	5	1	5

