M337 2001 Exam Solutions — Issue 1.0

2001 Question 1

(a) 1 mark

g -21
The points A and B are o and its complex conjugate respectively. The unlabelled points are the
cube roots.

(b) 2marks (Unit A1, Ex. 2.1(e))

o = (-2 +2% =48 =22 (Unit A1, Section 2, Para. 2)

Arg o= 3m/4. (Unit A1, Section 2, Para. 8)

() 2 marks (Unit A1, Ex. 3.1(b)(i1))

The principal cube root of a is (Unit A1, Section 3, Para. 3)

(2\/5)”3(%{%%} N isin(%%)) - \/5(%+ 1%j —14i

(d) 2 marks (Unit A1, Ex. 3.1(b)(ii))

The other roots are found by rotating the principal root through 27/3 and 4n/3. (Unit A1,
Section 3, Para. 5). See diagram in part (a)

(e) 1 mark

k=4
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2001 Question 2

(a) 2 marks
P o ~ 2i
/ e, >
! .r'-r . \ |
L =
L % H "Z HE-mmem oy
\ ..h- _’; -2 -1 1 2
\ AT /
~ s '
e -
. --
i b

(b) 6 marks

(b)(i) A and B are regions (Unit A3, Section 4, Paras. 6 and 7).

(b)(i1) fis analytic on A and B (Unit A4, Section 1, Para. 3, and Section 3 Para. 4).

[This is because f is analytic on € — {0} and neither A or B contain {0}. Remember that
Arg z is not defined for z = 0 (Unit A1, Section 2, Para. 5). |

(b)(iii) B (Unit B1, Section 3, Para. 8 and Unit B2, Section 2, Para. 1).
[We can draw closed contours in A round the singularity at 0 so the integral is non-zero.

1/z is analytic on the simply-connected region B (Unit B2, Section 1, Para. 3) so by
Cauchy’s Theorem (Unit B2, Section 1, Para. 4) the integral is 0. ]

(b)(iv) A (Unit A3, Section 3, Para. 3b).

[On B we can get as close to 0 as we want e.g. the sequence {z, = 1/n}.
Therefore |f] is unbounded]
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2001 Question 3

(a) 3 marks

(a)(i) The standard parametrization for I'; (Unit A2, Section 2, Para. 3) is
1) =1 -t)(-1)+ti=(t-1)+ti, te][0,1]

(@)(i) y/()=1+i.

As v is differentiable on [0, 1], y "is continuous on [0, 1], and Y "is non-zero on [0, 1] then yisa
smooth path (Unit A4, Section 4, Para. 3).

As v is a smooth parametrization then (Unit B1, Section 2, Para. 1)

JRezdz = [[{Rey, (O}, (1)
= [ (=11 +i)de

=(1+i){(t_1)21 _ i

2 2

(b) 5 marks
The length of the contour I',, L=|(1 +1)— (1 -1)|=|2i|=2.

Using the Triangle Inequality (Unit A2, Section 5, Para. 3a) then for z on the contour I',
|L0g z| = ‘loge|z| +1Arg z‘ (Unit A2, Section 5, Para. 1)

z

< ‘loge ‘+| Arg 7|

<log, V2 +% <3 (Less writing)

Using the Backwards form of the Triangle Inequality (Unit A2, Section 5, Para. 3c) then for z
I

‘5+z2‘2‘5—|z|2‘2|5—2|:3 since 1 < |z| <2"2

Logz

5 =1=M.
5+z

Putting f (z) = then on I'; we have | f (Z) | <

W | W

By the Quotient Rule (Unit A3, Section 2, Para. 5) f(z) is continuous on {z € C : Re z> 0} and
hence on the contour I';. Therefore by the Estimation Theorem (Unit B1, Section 4, Para. 3)

[ LogZ gl e ML=1%2=2.

5+z
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2001 Question 4

(a) 4 marks

(1) The Taylor series for sinh and exp (Unit B3, Section 3, Para. 5) are
3

) z
s1nhz:z+?+... forz € C.

2 Z3
eZ:1+z+E+—'+... forz € C.

By the Composition theorem for Taylor Series (Unit B3, Section 4, Para. 3)

3 3 2 3 3
e =4z —+. |tz —+. | |z —+. |+
3! 2! 3! 3! 3!

(ii)  Since sinh z and e” are both entire functions then by the Composition rule so is "™ * (Unit
A4, Section 3, Para. 1). Therefore the Taylor series for f is also valid for z € C. (Unit B3,
Section 3, Para. 3)

(b) 4 marks

g(Z)=L2{1+1%2}

Z(_—zlj since | z | > 1.

n=0\ Z

N

1
Z2
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2001 Question 5

(a) 4 marks

2mi/3 4mi/3

Since z* — 1 has zeros at z= 1, ¢, and ¢*™ then f also has simple poles at these points.
Let g(z) =1 and h(z) =2’ - 1. Then h'(z) = 3%

If o is one of the poles then g and h are analytic at o, h(a) = 0, and h/(ct) = 30> # 0. Therefore by
the g/h rule (Unit C1, Section 1, Para. 2)

Res(f,l) = %

Res(f,ezm/3)= . 41ni/3 _ %ezm‘/s
e

4 1 1 ..
Res(f,e4“'/3): T _ 56727[]/3
c

(b) 4 marks

I shall use the result given in Unit C1, Section 3, Para. 8.
t
me0=hmo=€—Lmdqo:ﬂl,

p and q are polynomial functions such that the degree of q exceeds that of p by at least 2, and the
pole of p/q on the real axis is simple. Therefore

jﬁllm:2m8+mT

where S is the sum of the residues of f at the poles in the upper half-plane, and
T is the sum of the residues of f at the poles on the real axis.

As S =Res(f, ¢?™) and T = Res(f, 1).

J.t31 1dt =2ni(e

—00

2mi/3

] + ni(éj using part (a).

2ni[ 1 \/5] i \/gn
="t i+ ==

3 2 2 3 3
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2001 Question 6

(a) 2 marks

Using the Triangle Inequality (Unit A1 Section 5, Para 3) we have

) e’ —e’| 1 LN
sinhz| = <\ +le””
finh = (=<~ {e’| +fe |
- %{eR“ + eRe(’Z)} (Unit A2, Section 4, Para. 2)
< % {e‘ReZ‘ +elRet) }: e as |Re z| = | Re (-2) |
(b) 4 marks
. , . . : sinh z .
I shall use Weierstrass’ M-test (Unit C3, Section 3, Para. 5) with ¢, (z) = 1 where n is an
n- +
integer.

‘Rez‘

_|sinhz| e
¢n(z)|_|n2 +1|S n’+1
3

OnE,

using part (a)

<

as|Rez| <3 onE.
+1

o B
[\S]

8] | >

<

=

3

. . . e
Therefore the 1% assumption of Weierstrass’ M test holds if we set M = — .

n

. < > 1 > . . < .
Since Z}Mn = 632—2 and 2—2 is convergent (Unit B3, Section 1, Para. 8) then Z‘Mn 1s

convergent. Therefore the 2™ assumption of the M test also holds.

Hence by the M-test z Sl?h z

—n°+1

converges uniformly on E.

(©) 2 marks

Since the functional equation of the Gamma function (Unit C3, Section 4, Para. 2) holds on
ze C-{0,-1,-2, ...} (Unit C3, Section 4, Para. 3) so

(Unit C3, Section 4, Para. 4)

)
)= (T )
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2001 Question 7

(a) 1 mark

q is a steady continuous 2-dimensional velocity function on the region C and the conjugate
velocity function q(z) = z +1is analytic on C. Therefore q is a model flow on C (Unit D2, Section
1, Para. 14).

(b) 4 marks

The complex potential function Q is a primitive of q(z) (Unit D2, Section 2, Para. 1). Therefore
2
the complex potential function Q(z)= Z? +1z and the stream function

‘P(X, y) = ImQ(z) =xy+x (Unit D2, Section 4, Para. 4)
A streamline through 1 is given by x(y + 1) = ‘P(I,O) =1.

So y= (1/ x)—l
The velocity function at 1 is q(1) =1 —1 (south-east)

A streamline through -1 - i is given by x(y + 1) = ‘P(— 1,—1) =0.
Since the streamline passes through —1 — 1 then it must be y = -1.
The velocity function at—1 - iis q(-1 - 1) = -1 (Left)

(¢) 3 marks

A degenerate streamline (Unit D2, Section 1, Para. 4) has q(z) = 0 at some point on the
streamline. This occurs when z = -i.

The circle indicates the stagnation point.
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2001 Question 8

(a) 3 marks

fl@=1+i=0.
f2(3) =1

Since f*(i) =i then i is a periodic point with period 2 (Unit D3, Section 2, Para. 7).
YD) =f'G@)* ' (f'@))=f'G) *£(0)  (Unit D3, Section 2, Para. 8)
f'(z) =32* so f'(0)=0.

Therefore since | (f %) /(i)| = 0 then i is a super-attracting point (Unit D3, Section 2, Para. 10).

(b) 5 marks
(b)(i) Same as 2002 Question 8(b)(ii).
(b)(i1)

P(0)=-1-1i.
P2(0)=(-1-1) +(=1-i)=2i+(-1-i)=~1+i.

C

P}(0)=(-1+i) +(-1-i)=-2i+(-1-1)=-1-3i.

C

As

P (0)| > 2 then c does not lie in the Mandelbrot set (Unit D3, Section 4, Para. 5).
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2001 Question 9
(a) 8 marks

Putting z = x + iy we have
f(z) = (x + iy)* + 3y” + i6x
= (X~ ¥’ +3y") +i(2xy + 6x7)
= u(x, y) + i v(x,y)
where u(x,y) = x> + 2y*, and v(x,y) = 2xy + 6x°.

ou ou ov ov
—IX,y)=2x, —(x,y)=4y, —(X,y)=2y+12x, —(X,y)=2x
(x)=2x, Lxy)=4y. L lxy) 2 (s

10>
f is not differentiable at a point unless the Cauchy-Riemann equations (Unit A4, Section 2, Para.
1) hold.

M = ol always holds.

ox

%(Q,B) =2+12a=—-4p = —%(Q,B) holds when B = -2a

v v
"ox oy

2|2

As f'is defined on the region C, and the partial derivatives %,

1. existon C
2. are continuous on the line y = -2x.
3. satisfy the Cauchy-Riemann equations on this line
then, by the Cauchy-Riemann Converse Theorem (Unit A4, Section 2, Para. 3), f is differentiable

on the line { x —2ix : x €R}

(b) 10 marks

(1) Since g is a polynomial then g is entire (Unit A4, Section 1, Para. 7) and
g/(z) =2z on C. As g(z) # 0 when z # 0 then g is conformal on € — {0} (Unit A4, Section
4, Para. 6).

(i1) As 1/2 is in the domain of y, then y,(n/2) =1 + exp(in/2) = 2i.
As 2 is in the domain of y, then y,(2) = 2i.
Therefore I'; and I', meet at the point 2i.
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4

(iii)  As gis analytic on C and g (2i) # 0 then a small disc centred at 2i is mapped
approximately (Unit A4, Section 1, Para. 11) to a small disc centred at g(2i) =-4 + 2 =-2. The
disc is rotated by Arg (g(2i)) = Arg 4i = 7/2, and scaled by a factor | g'(2i)| = 4.

@iv)  g(0)=2.
.
= —>—
2 -1 1 z

_2'1'

g(I"y) is the arrow to the right.
[As g/(O) = (0 the mapping is not conformal.]
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2001 Question 10

(a) 2 marks

Since exp (z) is an entire function then fis defined when 1/(z+1) is defined. Therefore f only
has one singularity and this is at z = -1.

Therefore the Laurent series for f'is Zl'(

n=0 n:

! ) for|z+1|>0.
+1

As there are an infinite number of terms with a negative power of (z + 1) then f has an essential
singularity at —1 (Unit B4, Section 2, Para. 8).

(b) 16 marks

(b)(i) LetR={z:|z|<1}.

As R is a simply-connected region, f is analytic on R, and C; is a closed contour in R then by
Cauchy’s Theorem (Unit B2, Section 1, Para. 4)

If(z)dz =

_ 1 flz)
O J4z+1) Z_165‘:(Z+}‘)2 &

LetR={z:|z|]<1}.
R is a simply-connected region, f is analytic on R, and C; is a closed contour in R.

As —1/4 lies inside C; then by Cauchy’s n™ derivative formula (Unit B2, Section 3, Para. 1) with
n=1and a =-1/4 we have
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(b)(iii)
Let R=C.
R is a simply-connected region and f is analytic on R except for a finite number of singularities.

C, is a simple-closed contour in R not passing through any singularities. Therefore by Cauchy’s
Residue Theorem (Unit C1, Section 2, Para. 1)

jf(z)dz = 2mi Res(f;-1) = 2mi(1)

Gy

since, from part (a), the coefficient of (z+1) ~' in the Laurent series for fis 1.

(b)(iv)

g(z) = has a simple pole at z = 0 and an essential singularity at z = -1.

f(z)

Since C is a simply-connected region and g is analytic on C exceptatz=0andz=-1,C,isa
simple-closed contour in C not passing through either of these singularities. Then by Cauchy’s
Residue Theorem (Unit C1, Section 2, Para. 1)

Ig(z) dz = 2ni(Res(g,0)+ Res(g,—l))

G,

Res(g.0) = Z“jo (2—0)e(z)=£(0)=e.

et (g e

The coefficient of (z+ 1) ' in this equation is

Therefore Res (g, -1)=-e+ 1.

Hence Ig(z)dz =2mi (e -e+ 1) =2mi.

G,
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2001 Question 11

(a) 7 marks
(a)(1)
LetR =C.

Since f'is analytic on the region R (Unit A4, Section 1, Para. 7) and 0 € R and the Taylor series
of fabout 0 is

flz)=-z+72°
then, by the Local Mapping Theorem (Unit C2, Section 3, Para. 4), fis one-one near 0.

(a)(ii)

Since £'(0) = 1 # 0 then using the strategy for inverting a Taylor series (Unit C2, Section 3, Para.
8) we have

z=bi(-z+ )+ by(-z+2) + bs(-z+ Z°) + bu(-z+ 2°) + bs(-z + 2°)’ + ...
where the b; are the coefficients of the Taylor series for f ' about f(0) = 0.

As fis odd then so is ! so by,,=0 foralln €Z.

Equating powers of z we have
Z. 1=-b12>b1=-1.
Z3Z 0:b1—b33b3:b1:-1.
ZSZ 0:3b3—b53b5:-3.

Therefore f'(z)=-z—2" - 32" - ...

(b) 7 marks
Ler R = {z: |z| < 1}.

Since g is defined on the bounded region R and continuous on R then, by the Maximum
Principle (Unit C2, Section 4, Para. 4), there exists an a € 0R such that

lg(z)| < |g(o)| forz e R.

max{lg@)|: <1}
=max{lg(z) :z=¢",t € [0,2n]}  (onOR)
= max{le’ +i| : t € [0, 2]}
=max {|cos(2t) + i(1 +sin 2t)| : t € [0, 2]}
= max {( cos*(2t) + 1 + sin®(2t) + 2 sin 2t)"* : t € [0, 27]}
=max{(2+2sin2t)"?:t € [0, 2n]}
=2 when t = /4, or t = 5n/4.

[[OR |&®" +i|] <|&”| +|i| =1+ 1=2. Since |&" +i| =2 when t = /4, or t = 57/4 then
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max {|g(z)| : |z| <1} = 2]

By the Triangle Inequality (Unit A1, Section 5, Para. 2)
g@)| =12 +i| < |27 + fi| <2 if [z] < 1.

Therefore g(z) only occurs its maximum value of 2 on the boundary of |z| < 1 and this occurs at

1 .
Z:iﬁ(l+1).

(©) 4 marks

(c)(®)

True.

As h is one-one on D then it is not constant on the region D. As h is analytic and non-constant on
D then by the Corollary to the Open Mapping Theorem (Unit C2, Section 3, Para. 2) h(D) is also a
region.

(c)(i)

False.

h(z) = ! is analytic on D.
—Z

If z,, z, € D then

h(z,)=h(z,) = —— = —

1-2z, _1—22

=>1-z,=1-2z, =12 =1z2,.

Therefore h is one-one on D.

Assume | h(z) | is bounded above by M > 0. Since h(1-1/2M) = 2M > M then the assumption that
h is bounded is incorrect.

Therefore h(D) is not bounded.
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2001 Question 12

(a) 3 marks

Using the formula for a transformation mapping points to the standard triple (Unit D1, Section 2,
Para. 11) then the Mobius transformation f‘l which maps 1, /2(1+ 1) ,and 1 to 0, 1, and o
respectively is

(a) 15 marks

(b))
i R B L] \ 2i|
l"m % l
% \ i
: %
_1 1 f = - f
2 1 1 2
| d S
R

(b)(i1) Since fl maps i to 0 and 1 to oo then the straight and curved boundaries of R are mapped to
extended lines originating at the origin.

From part (a), "2(1 +1) is mapped to a point on the positive real-axis then the straight boundary is
mapped to the non-negative x-axis.

At z =1 the angle between the boundary lines of R are at an angle of n/4. Therefore as the
transformation is conformal then this is also the angle at the origin of the transformed lines. Going
along the straight line boundary in R from i towards 1 the region to be mapped is on the left.
Therefore the image of the region is above the non-negative real axis.

Therefore the image of R under f‘l iIsRi={z e C:0<Argz<mn/4}
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(b)(iii) A conformal mapping from R, onto S is the power function w = g(z)=z,".
Since the combination of conformal mapping is also conformal then a conformal
mapping from R to S is

f(z) = (—Zz_Jrlij4

(b)(iv)

Since f ' = (g, f)) '=(f; ',g") then using Unit D1, Section 2, Para. 6 we have

Zl/4+i

1/4

£7(z)=
(Z) z ' +1
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