Solutions to the 2005 exam paper

These solutions were devised by two 2005 students. The answers are designed to aid revision, are by no means definitive, may contain errors, and do not contain the level of detail needed for the exam. They are not endorsed or verified by the OU.

Q1a

Finland: population increased but live births decreased.
Northern Ireland: population increased and so did number of live births.

Q1b	
UK	1.13
Cyprus	1.11
Finland	1.07
Irish Republic	1.55
Italy	0.93
Luxembourg	1.21
Netherlands	1.26
Total	1.07

Q1c
Rounding errors (more detail needed to gain 2 marks).

Q1d

Need to draw a time series graph with key, axes labelled etc.

Q1e

The overall population amongst the seven countries appears to increase from 2000-2002, whilst the majority of the live birth rates (LBR) in the countries decreases. Little change in LBR is apparent in Italy, UK and Finland, whilst Cyprus shows a dramatic decrease in LBR between 2001-2002. The Irish Republic seems to buck the trend and is the only country to illustrate an increase in LBR over the period.

Q2

Negative relationship.
Roughly linear, with a great deal of variability / scatter.
Q3
Median = 16.5
$Q_{u}=30$
$Q_{L}=11$
IQR = 19
IQR x $1.5=28.5$, and $28.5+Q_{U}=58.5$, so upper adjacent value $=39$.
Q4a
Herring
Q4b
Total catch, in order to calculate angles.
Q4c
Bar Chart since data is discrete.

Q5
Exponential distributions have mode at 0.
Data represented in diagram have a higher mode.
Q6a
Left-skew
X^{2}
Transformations with powers above 1 expand high values relative to low values, thus reducing leftskewness.

Q6c
Mean below 7.
Median on boxplot is 7 . Left-skew data have mean smaller than median.
Q7
For valid p.m.f.s, sum of probabilities $=1$.
Sum of these probabilities $=1.2$, hence not a valid p.m.f.
Q8
$E(X)=0.5$
$V(X)=0.45$
Q9a
$\overline{P(X} \leq 10)-P(X \leq 5)$
$=\left(1-\frac{9}{100}\right)-\left(1-\frac{9}{25}\right)$
$=0.91-0.64$
$=0.27$
Q9b

$$
\begin{gathered}
\frac{0.95}{0.95}=1-9 / q^{0.95}{ }^{2}=-9 / q^{0.95} \\
-0.05=-9 \\
20=q^{0.95} /{ }^{2} /{ }^{0} \\
180=q^{0.95}{ }_{2} \\
q^{0.95}=13.42
\end{gathered}
$$

I don't know if this is right, but i put this in the exam!
Q10a
Discrete uniform on integers 1-120.
Data are discrete.
No reason to suspect that the fault is more likely to occur at any particular pylon rather than any other pylon.
Q10b
$\overline{\text { Mean }}=60.5$
Variance $=1200$

Q11a
A: Geometric (0.1)
B: B (600, 0.005)
C: Poisson (75)
D: Exponential (2.5)
Q11b
B: This one caused some debate in the OUSA M248 conference. I thought this would be $N(3,2.985)$, but it was pointed out that as $n p$ is only 3 , the Poisson approximation for rare events should be used instead, which is Poisson (3).
C: $\mathrm{N}(75,75)$
Q11c
$\overline{\text { Using }} \mathrm{N}(3,2.985)$, I calculated
$P(X>2)$
$=1-P(X \leq 2)$
$=1-\mathrm{P}(\mathrm{Y} \leq 2.5)$
$=1-\mathrm{P}\left(Z \leq \frac{2.5-3}{\sqrt{2.985}}\right)$
$\approx 1-P(Z \leq-0.29)$
$=1-(1-0.6141)$
$=0.6141 \approx 0.614$
Using Poisson (3) gives
1 - SIGMA [from $i=0$ to 2] $P(X=i)$ i.e. $1-e^{\wedge}(-3)\left(1+3+3^{2} / 2!\right)=0.577$.
Q12a
$\overline{\text { Mean }}=$ standard deviation, so variance $=$ mean squared.
$E(U)=E(X)-E(Y)=-1$
Variance $(\mathrm{U})=3^{2}+4^{2}=9+16=25$
Q12b
$\frac{\mathrm{V}(3 \mathrm{Y})}{}=3^{2} \mathrm{~V}(\mathrm{X})=3^{2} \times 16=144$
Q13
$\hat{\hat{p}}=30 / 80=0.375$
$z=0.995$-quantile $=2.576$
$\left(p^{-}, p^{+}\right)=(0.375 \pm 2.576 \sqrt{0.375 x 0.625 / 80})$
$\approx(0.2356,0.5144)$

Q14a
$\mathrm{T}_{50} \approx \mathrm{~N}\left(86 \times 50,11.5^{2} \times 50\right)$ so $\mathrm{T}_{50} \approx \mathrm{~N}(4300,6612.5)$
Assume normal distribution.
Q14b
$\left.\overline{P\left(T_{50}\right.}>4500\right)$
$=P\left(z>\frac{4500-4300}{6612.5}\right)$
$\approx P(z>0.03)$
$=1-0.9931$
$=0.0069$
≈ 0.007
Q15
Transformation is increasing.
Approximate confidence interval is
($68.7 \times 2.54,69.1 \times 2.54$)
$\approx(174.5,175.5)$
Q16a

$\mathrm{S}_{\mathrm{P}}{ }^{2}=\frac{16 \times 3.61+17 \times 1.69}{17+18-2}$ (remember to use sd squared, not sd)
≈ 2.62

Q16b

(0.086, 2.314)

Q16c
Confidence interval only includes positive values.
Mean weight for patients using diet with exercise is different from that for patients using only the diet.

Appears that patients who use diet and exercise lose more weight. (More detail on meaning of plausible ranges needed for full marks)

Q17a

$\mathrm{H}_{0}: \mu=500 \quad \mathrm{H}_{1}: \mu \neq 500$,
where μ is the population mean volume of drink (in ml) put into the cartons by the new filling machine.
The significance level is 5%.
Q17b
 hypothesis at the 5% significance level.
There is moderate evidence that the population mean volume of drink put into the cartons by the filling machine is greater than 500 ml .

Q18a

$\mathrm{H}_{0}: \mathrm{m}=0 \quad \mathrm{H}_{1}: m \neq 0$,
where m is the population median difference in heart rates before and after the running programme.

Q18b

29.5

Q18c
$\mathrm{E}\left(\mathrm{W}_{+}\right)=18$
$V\left(W_{+}\right)=51$

Q18d

$z=\frac{29.5-18}{\sqrt{51}}=1.61$
P $(|z| \geq 1.61)$
$=2 \times(1-0.9463)$
$=0.1074$
≈ 0.107
Since $p>0.10$, there is little evidence against the null hypothesis.
There is little evidence to suggest that the population median difference in heart rates before and after the running programme is not 0 .

Q18e

After the ties are excluded, the sample size is only 8, so the approximation is likely to be poor. Also, there are only 6 distinct differences.

Q19

1: Results
2: Introduction
3: Results
4: Methods
5: Discussion
6: Methods
Q20a
$D=\frac{98}{446}-\frac{77}{481} \approx 0.0596$
$\hat{p}=\frac{98+77}{446+481} \approx 0.1888$
$N\left(0,0.1888(1-0.1888)\left(\frac{1}{446}+\frac{1}{481}\right)\right.$, which is $N(0,0.000662)$
$P(|Y| \geq D)=P\left(|Z| \geq \frac{0.0596}{\sqrt{0.000662}}\right)$
$\approx P(|Y| \geq 2.32)$
≈ 0.020
Q20b
Moderate evidence against H_{0}.
Moderate evidence to suggest that the proportions are not equal.
Data suggest that proportion of male deaths at the hospital that are attributable to smoking is higher than that for females.

Q21a
Power $=P\left(z \geq 1.645-\frac{5}{12 / \sqrt{15}}\right)$
$\approx P(z \geq 0.03)$
≈ 0.488

Q21b

The test is not very strong. The researcher may not reject the null hypothesis, even though it is false. This is a Type II error.

Q22a

Exponential.
Modelling the time between successive events that are random in time is a typical application of an exponential distribution.

Q22b
$\frac{\text { Q22b }}{\text { Mean }}=2.2$
M.L.E. $=\frac{1}{2.2} \approx 0.4545$

Q22c
$\hat{\lambda}$ is biased.
Since there is one value that is much higher than the others, and since the sample size is small, this is likely to be a problem.

Q22d
L(theta) $=1-\exp (-6$ theta $\times 13.2)$
Q23a
$\frac{0.0152}{\sqrt{7.0172 / \sqrt{7379.886}}} \sim \mathrm{t}(70)$
So $0.4929 \sim t(70)$
0.9 -quantile of $t(70)=1.294$ so $p>0.10$

Q23b

There is little evidence against the null hypothesis. I conclude that the milling temperature (degrees C) and steel elongation (\%) are unrelated.

Q24

These questions are often ambiguous.
Either, residuals increase in magnitude as they move across the fitted values, hence variance is not constant, so LRM is not OK.
Or, residuals are scattered about zero in a random, unpatterned fashion, hence LRM is OK.

Q25
Spearman correlation coefficient $=-1$
If the Pearson correlation coefficient $=-1$, then the points must lie exactly on a straight line with negative slope, so the Spearman correlation coefficient must also be -1.

Q26a

(i) $132 / 662 \approx 0.1994$
(ii) $180 / 196 \approx 0.9184$
(iii) $16 / 132 \approx 0.1212$

Q26b

(i) Expected value $=132 \times 196 / 662 \approx 39.082$ Contribution to test statistic is $(16-39.082)^{2} / 39.082 \approx 13.63$
(ii) Degrees of freedom $=1$
0.995-quantile of $\chi^{2}(1)=7.88$
p value <0.005

Q26c

Strong evidence of an association between location and outcome.
Since actual number of fatal accidents at intersections lower than expected number, data suggest fatal accidents are less likely to occur at intersections than at non-intersections.

