
Tutorial 5 (Parabolic PDEs)
Class work

1. Use the explicit scheme for parabolic PDEs to discretise the following parabolic partial differential equation:
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where u(x,t) is the dependent variable at any position, x, and time, t. Taking 
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, find the finite difference approximations for u(x,t) at time t = 0.02. [Hint: use central difference approximations for the derivative boundary conditions.]

Lab work
1. Consider the parabolic equation
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subject to 
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Use the explicit scheme with mesh spacing 
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. Now change the timestep, 
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, to 0.1. What happens?
2. Solve the same equation as problem 1, but use the Crank-Nicholson scheme to obtain approximate values for 
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. Now change the timestep to 0.1. What happens?
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