THE UNIVERSITY
 of LIVERPOOL

1.

(a)

Show that the following real-valued function

$$
f(x)=\ln \left(\frac{1+x}{1-x}\right)+1
$$

has the domain $(-1,1)$ and further by studying its gradient in the domain prove that $f(x)$ has only one root. Verify that this root is $x=(1-e) /(1+e)$.
[6 marks]
Use 2 steps of the Newton-Raphson method to find an approximate solution to $f(x)=0$, starting from $x^{(0)}=0$. Compute the error in the approximation.

Use 2 steps of the Secant method to find an approximate solution to $f(x)=0$, starting from $x^{(0)}=0, x^{(1)}=-0.5$.
(Keep at least 4 decimal digits in calculations.)
(b)

Set up the general formula for using the Newton-Raphson method for the following three simultaneous nonlinear equations in x_{1}, x_{2}, x_{3} :

$$
\left\{\begin{array}{l}
\ln \left(x_{1} / 2\right)+x_{2}=0, \\
x_{1} x_{3}+1=0, \\
x_{2}^{2}+5 x_{3}^{2}-1=0,
\end{array}\right.
$$

with some initial guess $\mathbf{x}^{(0)}$. (Do NOT invert any matrices.)

THE UNIVERSITY
 of LIVERPOOL

2.

For the following linear system $A x=b$ with

$$
A=\left(\begin{array}{ccc}
2 & 0 & 4 \\
4 & 3 & 5 \\
0 & -3 & 4
\end{array}\right), b=\left(\begin{array}{l}
-2 \\
-1 \\
-4
\end{array}\right)
$$

(i) solve it by Gaussian elimination;
(ii) use the multipliers to form both the $L U$ and the $L D M$ decompositions: $A=L U$ and $A=L D M$;
(iii) compute $\|A\|_{1}$ and $\|b\|_{\infty}$;
(iv) find the 1 -norm and ∞-norm condition numbers $\kappa_{1}(A)$ and $\kappa_{\infty}(A)$, using $\left\|A^{-1}\right\|_{\infty}=17 / 2,\left\|A^{-1}\right\|_{1}=55 / 6$.
3. Consider the linear system $A x=b$, where

$$
A=\left(\begin{array}{ccc}
5 & -1 & 2 \\
1 & -3 & -1 \\
1 & 0 & 7
\end{array}\right), \quad b=\left(\begin{array}{c}
5 \\
11 \\
7
\end{array}\right) .
$$

Using exact arithmetic (i.e. fractions):
(i) Write down the 3 equations for the 3 components of the vector $x^{(n+1)}$ for the Jacobi iteration method and carry out 2 iterations starting from $x^{(0)}=\mathbf{0}$. Find the iteration matrix T_{J} and the vector c_{J} such that

$$
x^{(n+1)}=T_{J} x^{(n)}+c_{J} .
$$

(ii) Find $(L+D)^{-1}$, where L and D are the lower diagonal and the diagonal parts of A respectively, and hence compute the iteration matrix $T_{G S}$ and the vector $c_{G S}$ of the Gauss-Seidel iteration method such that

$$
x^{(n+1)}=T_{G S} x^{(n)}+c_{G S} .
$$

(iii) Use the Gerschgorin theorem to determine if each of the Jacobi and GaussSeidel Iteration methods should converge.

THE UNIVERSITY
 of LIVERPOOL

4.

Consider the following matrix

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & -1 & -1 \\
0 & 1 & 7
\end{array}\right)
$$

(i) Use the Gerschgorin theorem to locate all three eigenvalues.
(ii) Given the LU factorization for $(A-7 I)$ as

$$
(A-7 I)=\left(\begin{array}{ccc}
-4 & 0 & 1 \\
2 & -8 & -1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -1 / 8 & 1
\end{array}\right)\left(\begin{array}{ccc}
-4 & 0 & 1 \\
0 & -8 & -1 / 2 \\
0 & 0 & -1 / 16
\end{array}\right)
$$

use the shifted inverse power method for two steps to estimate the eigenvalue near $\gamma=7$ and its eigenvector. Start the iteration from $x^{(0)}=[0,0,1]^{T}$ and keep at least 2 decimal places throughout your calculations.
[15 marks]

5.

Consider the following boundary value problem, by the usual finite difference method with $(N+1) \times(M+1)=3 \times 3$ boxes, i.e. 4 interior and uniformly distributed mesh points:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=2(x+y)^{2}, \quad p=(x, y) \in \Omega
$$

where the domain is the square $\Omega=[0,0.3] \times[0,0.3] \in R^{2}$, with the Dirichlet boundary condition $u=x$ given. Set up the linear system in matrix form, but do not solve it. Keep at least 4 decimal digits in calculations.

THE UNIVERSITY
 of LIVERPOOL

6.

(a) Compute the Lagrange interpolating polynomial $y=P_{3}(x)$ of degree 3 that passes through these 4 points $\left(x_{j}, y_{j}\right)$

$$
(0,2),(\sqrt{2}, 3),(-1, \sqrt{7}),(5, \sqrt{13})
$$

(b) The three point quadrature formula can be written as

$$
\int_{-1}^{1} f(x) d x=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

where $x_{0}=-\sqrt{15} / 5, x_{1}=0, x_{2}=\sqrt{15} / 5$.
Find suitable weights w_{j} (in exact arithmetic) so that the rule becomes a Gauss type, i.e. the rule is exact for degree $0,1,2$ polynomials. [5 marks] Adapt the above rule designed for $[-1,1]$ to approximate

$$
I=\int_{0}^{1} \frac{3 x^{3} d x}{\sqrt{2+10 x^{4}}} .
$$

Verify that the true integral is $I=\frac{3 \sqrt{3}}{10}-\frac{3 \sqrt{2}}{20}$ and compute the absolute error of the approximation to this true value (keeping at least 4 decimal digits in calculations)
[9 marks]
Finally verify that the above quadrature rule is also exact for higher order polynomials $f(x)=x^{3}, x^{4}, x^{5}$, but not for $f(x)=x^{6}$.

7.

(a) Use the explicit Euler method to solve the initial value problem

$$
\frac{d y}{d x}=\ln (x+y), \quad y(0)=2
$$

to obtain $\mathrm{y}(0.2)$ with the step length $h=0.1$. (Keep at least 4 decimal digits in calculations)
Explain how your method would change if you were to use the implicit Euler method.
[8 marks]
(b) Using the composite Trapezium rule (with 2 subintervals) in a collocation method, set up the linear system to find the numerical solution of the following integral equation

$$
7 u(x)-\int_{0}^{1} \cos (x+y) u(y) d y=2 x+1 \quad x \in[0,1]
$$

Do not solve the system.

