THE UNIVERSITY of LIVERPOOL

Math 766

Numerical Analysis, Solution of Linear Systems

Year 3 Sept 2005 Paper

Full marks will be awarded for complete answers to FIVE questions. Only the best 5 answers will be taken into account. Note that each question carries a total of 20 marks that are distributed as stated.

THE UNIVERSITY of LIVERPOOL

1.

i) Consider the following boundary value problem the solution of the following two dimensional partial differential equation

$$
u-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=x^{2}+y^{2}, \quad(x, y) \in \Omega
$$

where the domain is the square $\Omega=[0,0.3] \times[0,0.3] \in R^{2}$, with the Dirichlet boundary condition $\left.u\right|_{\partial \Omega}=x y$, to be solved by the finite difference (FD) method with 3×3 boxes i.e. 4 interior and uniformly distributed mesh points. Set up the linear system for the 4 interior unknowns (there is no need to solve the system).
[15 marks]
ii) Given that $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left(\begin{array}{lll}
7 & 2 & 4 \\
1 & 5 & 3 \\
2 & 3 & 6
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
21 \\
10 \\
6
\end{array}\right)
$$

write down the three equations for the three components of the vector $\mathbf{x}^{(n+1)}$ for the Jacobi iteration method and carry out 2 iterations starting from $\mathbf{x}^{(0)}=\mathbf{0}$. Find the iteration matrix T_{J} and the vector \mathbf{c}_{J} such that

$$
\mathbf{x}^{(n+1)}=T_{J} \mathbf{x}^{(n)}+\mathbf{c}_{J} .
$$

THE UNIVERSITY of LIVERPOOL

2.

A general quadrature rule may be denoted by

$$
\int_{a}^{b} f(x) d x=\sum_{j=0}^{N} w_{j} f\left(x_{j}\right) .
$$

i) Write down the middle-point rule (i.e. $N=0, x_{0}=0$) for evaluating

$$
\int_{-1}^{1} f(x) d x
$$

By mapping the interval $[0,1]$ to $[-1,1]$, use the middle-point rule to evaluate the following integral

$$
I=\int_{0}^{1}\left[2008 x+\frac{x^{2}}{\sqrt{10 x^{3}+3}}\right] d x .
$$

(Keep at least 4 significant digits in your calculations.)
Verify that the exact value for the definite integral is

$$
I=1004+\frac{\sqrt{13}-\sqrt{3}}{15} .
$$

Compute the absolute error of the approximation to this exact value.
ii) The three-point quadrature rule can be written as

$$
\int_{-1}^{1} f(x) d x=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

where $x_{0}=-1, \quad x_{1}=0, \quad x_{2}=1$.

Verify that for the rule to become a Gauss type, the following must hold

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
2 / 3
\end{array}\right) .
$$

Further find the weights w_{0}, w_{1}, w_{2}.

THE UNIVERSITY of LIVERPOOL

3.

i) State the implicit Euler method for solving

$$
\frac{d y}{d x}=f(x, y), \quad x \geq x_{0}, \quad y\left(x_{0}\right)=y_{0}
$$

ii) Combine the nonlinear Newton-Raphson method with the implicit Euler method to find a solution of the initial value problem

$$
\frac{d y}{d x}=y e^{-5 x}-y^{2}, \quad y(0)=1
$$

at $x=0.2$ with the step length $h=0.1$.
(Use no more than 2 iterations in each Newton-Raphson step.)
iii) Consider the following simultaneous nonlinear equations for x, y, z

$$
\left\{\begin{array}{r}
3 x^{2}+7 y^{2}+z^{2}=100 \\
6 x^{2}-3 y^{2}+z^{2}=120 \\
x+y-z=1
\end{array}\right.
$$

Given that the Jacobian matrix at $\mathbf{x}=\mathbf{x}^{(0)}=[4,2,5]^{T}$ is

$$
J^{(0)}=\left[\begin{array}{rrr}
24 & 28 & 10 \\
48 & -12 & 10 \\
1 & 1 & -1
\end{array}\right] .
$$

and

$$
\left(J^{(0)}\right)^{-1}=\left[\begin{array}{rrr}
1 / 1136 & 19 / 1136 & 25 / 142 \\
29 / 1136 & (-17) / 1136 & 15 / 142 \\
15 / 568 & 1 / 568 & (-51) / 71
\end{array}\right]
$$

carry out 1 step of the Newton-Raphson method at $\mathbf{x}=\mathbf{x}^{(0)}$. (Keep at least 4 significant digits in your calculations.)

THE UNIVERSITY of LIVERPOOL

4.

For the following matrix

$$
A=\left[\begin{array}{rrr}
99 & 1 & 1 \\
1 & -88 & -54 \\
1 & -54 & 87
\end{array}\right]
$$

i) use the Gerschgorin theorem to locate all three eigenvalues and determine if the matrix is SPD (symmetric positive definite).
ii) use 1 step of the power method to estimate the largest eigenvalue of $\lambda(A)$, using $\mathbf{x}^{(0)}=\left[\begin{array}{lll}0 & 1 & 2 / 7\end{array}\right]^{T} ;$
[10 marks]
iii) Let $B=A-\gamma I$. If the shifted inverse power method (for A with the shift $\gamma=90)$ produces the converging sequence of μ_{j} such that

$$
\lim _{j \rightarrow \infty} \mu_{j}=\mu=0.113
$$

which eigenvalue $\lambda(B)$ and which corresponding eigenvalue $\lambda(A)$ have been found?

5.

i) For $L=\left(\begin{array}{ccc}2 & 0 & 0 \\ 1 & 5 & 0 \\ -2 & 1 & 9\end{array}\right)$, compute L^{-1} using the factorisation method. Find the condition number of L (in the ∞-norm) and the spectral radius $\rho(L)$?
[10 marks]
ii) Compute $\|A\|_{1}$ and $\|A\|_{F}$ for $A=\left(\begin{array}{cc}-1 & 0 \\ 1 & \sqrt{2}\end{array}\right)$.
iii) The nonlinear equation

$$
7 \ln (2-x)-7 \ln (2+x)+18=0
$$

has a solution in $(0.5,1.9)$. Use 1 step of the Newton-Raphson method to estimate it, with $x^{(0)}=1.5$. (Keep at least 4 significant digits in your calculations.)

THE UNIVERSITY of LIVERPOOL

6.

Consider the following linear system

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
-2 & 1 & 1 \\
1 & -1 & 2
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
8 \\
-3 \\
3
\end{array}\right)
$$

i) Solve it by Gaussian elimination.
ii) Hence or otherwise find the $L D M$ decomposition of A.
iii) Find the inverse of A.

7.

For the following matrix A

$$
\left[\begin{array}{rrr}
8 & 0 & 1 \\
0 & 1 & 0 \\
1 & -14 & 8
\end{array}\right],
$$

i) use the shifted inverse power method for 2 steps to estimate the eigenvalue near $\gamma=0.5$ and the corresponding eigenvector. Start from $\mathbf{x}^{(0)}=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]^{T}$ and keep at least 4 significant digits in your calculations.

Hint. You may use the result

$$
(A-0.5 I)^{-1}=\left[\begin{array}{rrr}
0.1357 & -0.5068 & -0.0181 \\
0 & 2.0000 & 0 \\
-0.0181 & 3.8009 & 0.1357
\end{array}\right] .
$$

ii) compute $\|A\|_{1}$.

