THE UNIVERSITY
 of LIVERPOOL

1. Keep at least 4 decimal digits in calculations.
(a) Show that the following real-valued function

$$
f(x)=\ln \left(\frac{1-x}{1+x}\right)+1
$$

has the domain $(-1,1)$ and further by studying its derivative in the domain prove that $f(x)$ has exactly one root. Verify that this root is $x=(e-1) /(1+$ e).

Use 2 steps of the Newton-Raphson method to find an approximate solution to $f(x)=0$, starting from $x^{(0)}=0$. Compute the error in the first and second steps, and estimate the error in the third step, given that the Newton-Raphson method exhibits quadratic convergence.
(b) Carry out 1 step of the Newton-Raphson method starting at the point $x^{(0)}=(1,-1,2)^{T}$ for the following three simultaneous nonlinear equations in x_{1}, x_{2}, x_{3} :

$$
\left\{\begin{array}{l}
4 x_{1}-x_{3}^{2}=0 \\
x_{2}^{2}+2 x_{1}^{2}-3=0 \\
x_{2} x_{3}-6 \cos \left(x_{2}+x_{3}\right)=0 .
\end{array}\right.
$$

THE UNIVERSITY
 of LIVERPOOL

2. Given that $A x=b$, where

$$
A=\left(\begin{array}{ccc}
4 & 1 & 2 \\
2 & -5 & 1 \\
0 & 1 & 6
\end{array}\right), \quad b=\left(\begin{array}{c}
1 \\
5 \\
12
\end{array}\right) .
$$

Using exact arithmetic (i.e. fractions):
(i) Write down the 3 equations for the 3 components of the vector $x^{(n+1)}$ for the Jacobi iteration method and carry out 2 iterations starting from $x^{(0)}=$ $(0,0,0)^{T}$. Find the iteration matrix T_{J} and the vector c_{J} such that

$$
x^{(n+1)}=T_{J} x^{(n)}+c_{J} .
$$

(ii) Compute the iteration matrix $T_{G S}$ and the vector $c_{G S}$ of the Gauss-Seidel iteration method such that

$$
x^{(n+1)}=T_{G S} x^{(n)}+c_{G S} .
$$

Carry out 1 iteration of this method using this iteration matrix and vector, starting from $x^{(0)}=(0,0,0)^{T}$.
(iii) Use the Gerschgorin theorem to determine if each of the Jacobi and GaussSeidel iteration methods should converge.

THE UNIVERSITY
 of LIVERPOOL

3. Consider the following matrix A,

$$
A=\left(\begin{array}{ccc}
-5 & 2 & -1 \\
0 & -1 & 0 \\
-1 & 3 & 7
\end{array}\right)
$$

(i) Use the Gerschgorin theorem to locate all three eigenvalues.
(ii) Use the power method for 2 steps to compute the dominant eigenvalue and its corresponding eigenvector. Start from $z=[0,0,1]^{T}$ and keep at least 4 decimal digits in calculations.
[5 marks]
(iii) Use the shifted inverse power method for 2 steps to compute the eigenvalue near $\gamma=-5$ and its corresponding eigenvector. Start from $z=[1,0,0]^{T}$ and keep at least 4 decimal digits in calculations. You can use the result that

$$
(A+5 I)^{-1}=\left(\begin{array}{ccc}
-12 & 6.75 & -1 \\
0 & 0.25 & 0 \\
-1 & 0.5 & 0
\end{array}\right)
$$

THE UNIVERSITY
 of LIVERPOOL

4.

(a) Consider the solution of the following boundary value problem, by the usual finite difference method with 3×3 boxes, i.e. 4 interior and uniformly distributed mesh points:

$$
(1+2 y) \frac{\partial^{2} u}{\partial x^{2}}+(1+x) \frac{\partial^{2} u}{\partial y^{2}}=(x+y+1)^{2}, \quad p=(x, y) \in \Omega
$$

where the domain is the square $\Omega=[0,0.3] \times[-0.1,0.2] \in R^{2}$, with the Dirichlet boundary condition $u=2 y$ given.

Set up the linear system in matrix form, but do not solve it. Keep at least 4 decimal digits in calculations.
[16 marks]
(b) Using the usual finite central difference formulae, write down the finite difference equation for $v_{i j k}$ at a general point $\left(x_{i}, y_{j}, z_{k}\right)$ in the following 3D equation:

$$
(1+2 y) \frac{\partial^{2} v}{\partial x^{2}}+(1+x) \frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=(x+y+z+1)^{2} .
$$

THE UNIVERSITY
 of LIVERPOOL

5.

(a) Use the explicit Euler method to solve the initial value problem

$$
\frac{d x}{d t}=3 x(1-0.1 x), \quad x(0)=1,
$$

to obtain $x(0.2)$ with the step length $h=0.1$ (keep at least 4 decimal places in calculations). Compare your result with the exact solution:

$$
x(t)=\frac{10 e^{3 t}}{10+\left(e^{3 t}-1\right)} .
$$

Suggest how you could improve the accuracy of the numerical estimate.
Explain how your method would change if you were to use the implicit Euler method.
(b) Using the composite Trapezium rule (with 2 subintervals) in a collocation method, set up the linear system to find the numerical solution of the following integral equation

$$
2 u(x)-\int_{0}^{1} e^{x y-1} u(y) d y=x-1, \quad x \in[0,1] .
$$

Do not solve the system.
6. Consider the matrix A :

$$
A=\left(\begin{array}{cccc}
2 & 3 & 0 & 0 \\
1 & 2 & 0 & -1 \\
4 & 8 & -1 & 0 \\
0 & 2 & 1 & -3
\end{array}\right) .
$$

Using exact arithmetic (i.e. fractions), compute the $P A=L U$ decomposition of matrix A with partial pivoting. Use the decomposition to solve the system $A x=[1,1,2,4]^{T}$. Explain the computational benefits of pivoting.

THE UNIVERSITY
 of LIVERPOOL

7.

a) Consider the linear system $A x=b$ where

$$
A=\left(\begin{array}{ccc}
2 & 1 & 0 \\
4 & 5 & 4 \\
2 & 10 & 11
\end{array}\right), b=\left(\begin{array}{c}
4 \\
12 \\
15
\end{array}\right) .
$$

Solve it by Gaussian elimination, and find the $A=L D M$ decomposition. Use this $L D M$ decomposition to solve

$$
\left(\begin{array}{ccc}
2 & 1 & 0 \\
4 & 5 & 4 \\
2 & 10 & 11
\end{array}\right) x=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) .
$$

Explain the computational benefits of matrix factorization.
[12 marks]
b) Obtain the Crout $L U$ factorization for the following tridiagonal matrix, B :

$$
B=\left(\begin{array}{ccccc}
2 & 1 & 0 & 0 & 0 \\
4 & 5 & 4 & 0 & 0 \\
0 & 5 & 4 & -1 & 0 \\
0 & 0 & 4 & 1 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

