THE UNIVERSITY
of LIVERPOOL

Math 766

May 2005 Exam

Numerical Analysis: Solution of Linear Systems
 Year 3 Honours

Full marks will be awarded for complete answers to FIVE questions. Only the best 5 answers will be taken into account. Note that each question carries a total of 20 marks that are distributed as stated.

THE UNIVERSITY
of LIVERPOOL
1.
(a) Explain why the following real-valued function

$$
f(x)=5-2 x+\ln \left(\frac{2+x}{3+x}\right)
$$

has a root in the interval $(2,2.5)$.
Verify that $f^{\prime}(x)=-\frac{2(x+5 / 2)^{2}-3 / 2}{(x+2)(x+3)}$ and further use 2 steps of the NewtonRaphson method to find an approximate solution to $f(x)=0$, starting from $x^{(0)}=2.5$.
(Keep at least 5 decimal places throughout your calculations.)
(b) The following simultaneous nonlinear equations

$$
\left\{\begin{array}{l}
x_{1}^{3}+x_{2}^{2}-2=0, \\
x_{1}^{4}+x_{2}^{2}-9=0,
\end{array}\right.
$$

are plotted in Fig.1. From the graph, give rough estimates of both solutions.
[2 marks]
Taking the initial guess $\mathbf{x}^{(0)}$ respectively as $(-1,-2)^{T}$ and $(-1,2)^{T}$, use 1 step of the Newton-Raphson method to approximate both solutions. (Keep at least 4 decimal places throughout your calculations.)

Figure 1. Illustration of two curves in 2005 paper

2. Consider the following linear system $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left(\begin{array}{ccc}
-3 & -6 & 12 \\
-2 & -1 & 2 \\
6 & 13 & -21
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
75 \\
8 \\
-139
\end{array}\right) .
$$

With exact arithmetic (i.e. fractions),
i) use elementary row operations to reduce A to an upper triangular form;
[5 marks]
ii) use the multipliers to form both the $L U$ and the $L D M$ decompositions: $A=L U$ and $A=L D M$;
[5 marks]
iii) use the above $L U$ decomposition to find the solution \mathbf{x}.
[4 marks]
iv) compute $\|A\|_{\infty}$ and $\|\mathbf{b}\|_{\infty}$;
[2 marks]
v) find the 1 -norm and ∞-norm condition numbers: $\kappa_{1}(A)$ and $\kappa_{\infty}(A)$, using $\left\|A^{-1}\right\|_{1}=11 / 9$ and $\left\|A^{-1}\right\|_{\infty}=19 / 15$.
[4 marks]

THE UNIVERSITY
 of LIVERPOOL

3. Given the linear system $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left(\begin{array}{cccc}
3 & 1 & 0 & 0 \\
1 & 4 & 2 & 0 \\
0 & 2 & 4 & -1 \\
0 & 0 & -1 & 3
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
20 \\
19 \\
29 \\
-5
\end{array}\right)
$$

i) write out the three equations, by the Gauss-Seidel (GS) method, to obtain the new iterate $\mathbf{x}^{(n+1)}$ from the current iterate $\mathbf{x}^{(n)}$. Carry out 2 iterations starting from $\mathbf{x}^{(0)}=\left[\begin{array}{lll}9 & 0 & 9\end{array}\right]^{T}$;
(Keep at least 4 decimal places throughout your calculations.) [6 marks]
ii) write down L, D and U, the lower triangular, the diagonal and the upper triangular parts of A respectively. Find $(L+D)^{-1}$ and hence obtain the iteration matrix $T_{G S}$ such that

$$
\mathbf{x}^{n+1}=T_{G S} \mathbf{x}^{n}+\mathbf{c}_{G S},
$$

where the vector $\mathbf{c}_{G S}=\left[\begin{array}{llll}20 / 3 & 37 / 12 & 137 / 24 & 17 / 72\end{array}\right]^{T}$;
(No calculators required.)
iii) use the Gerschgorin theorem to determine whether or not the GS method converges, assuming all the eigenvalues of $T_{G S}$ are real.

THE UNIVERSITY
 of LIVERPOOL

4. Given the following matrix A

$$
\left[\begin{array}{rrr}
15 & 0 & 1 \\
0 & 2 & 1 \\
1 & -1 & -8
\end{array}\right],
$$

i) suggest a suitable shift for the shifted inverse power method to find each of the 3 eigenvalues (give your reasons);
ii) use the shifted inverse power method for 2 steps to estimate both the eigenvalue near $\gamma=-8$ and its corresponding eigenvector. Start the iteration from $\mathbf{x}^{(0)}=$ $\left.\begin{array}{lll}0 & 0 & 9\end{array}\right]^{T}$ and keep at least 2 decimal places throughout your calculations. You may use the LU factorisation for $(A+8 I)$ i.e.

$$
\left[\begin{array}{rrr}
23 & 0 & 1 \\
0 & 10 & 1 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 / 23 & -1 / 10 & 1
\end{array}\right]\left[\begin{array}{rrr}
23 & 0 & 1 \\
0 & 10 & 1 \\
0 & 0 & 13 / 230
\end{array}\right] .
$$

[15 marks]
5. Consider the following boundary value problem

$$
(1+y) \frac{\partial^{2} u}{\partial x^{2}}+(1+x) \frac{\partial^{2} u}{\partial y^{2}}=(x+y+1)^{2}, \quad(x, y) \in \Omega
$$

where the domain is the square $\Omega=[-0.1,0.2] \times[0,0.3] \in R^{2}$, with the Dirichlet boundary condition $u=5$ on all boundary points, to be solved by the finite difference (FD) method with 3×3 boxes i.e. 4 interior and uniformly distributed mesh points.

Set up the resulting FD linear system. (Keep at least 2 decimal places throughout your calculations and there is no need to solve the system.)
[20 marks]
6.
(a) Find the Lagrange interpolating polynomial $y=P_{3}(x)$ of degree 3 , which passes through the following 4 points $\left(x_{j}, y_{j}\right)$:

$$
(1,2), \quad(2,8), \quad(4,4), \quad(5,6) .
$$

[5 marks]
(b) Design a three-point quadrature rule of the Gauss type
[6 marks]

$$
\int_{-1}^{1} f(x) d x=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

by choosing suitable weights w_{0}, w_{1}, w_{2}, where $x_{0}=-1, \quad x_{1}=0, \quad x_{2}=1$.
(Hint. The rule should be exact for polynomials of degree $0,1,2$.)

Use the rule you obtained to approximate the integral

$$
I_{1}=\int_{-1}^{1} \frac{\cos x}{\sqrt{x^{2}+2}} d x .
$$

Modify the rule you obtained to approximate the integral

$$
I_{2}=\int_{0}^{3} \frac{\cos x}{\sqrt{x^{2}+2}} d x
$$

(Keep at least 4 decimal places throughout your calculations.)

7.

(a) Use the explicit Euler method to solve the initial value problem

$$
\frac{d y}{d x}=\sin (x+y-2), \quad y(0)=3
$$

to obtain $y(0.2)$ with the step length $h=0.1$.
[10 marks]
(b) Using the composite Trapezium rule (with 2 subintervals) in a collocation method, set up the linear system to find the numerical solution of the following integral equation

$$
5 u(x)-\int_{0}^{1} e^{x y-2} u(y) d y=x+3, \quad x \in[0,1]
$$

(No need to solve the system and no calculators required.)
[10 marks]
(Keep at least 4 decimal places throughout your calculations.)

