
MATH764 January 2007 Exam Solutions

All questions similar to seen exercises except where marked as Bookwork (B) or
Unseen (U).

1. (a) Probability mass function of S3:

P (S3 = 0) = P (Y1 = Y2 = Y3 = 0) =
1
2
× 3

4
× 7

8
=

21
64

P (S3 = 1) = P (Y1 = 1, Y2 = Y3 = 0) + P (Y2 = 1, Y1 = Y3 = 0)

+ P (Y3 = 1, Y1 = Y2 = 0)

=
1
2
× 3

4
× 7

8
+

1
4
× 1

2
× 7

8
+

1
8
× 1

2
× 3

4
=

21 + 7 + 3
64

=
31
64

P (S3 = 2) = P (Y1 = Y2 = 1, Y3 = 0) + P (Y2 = Y3 = 1, Y1 = 0)

+ P (Y3 = Y1 = 1, Y2 = 0)

=
1
2
× 1

4
× 7

8
+

1
4
× 1

8
× 1

2
+

1
8
× 1

2
× 3

4
=

7 + 1 + 3
64

=
11
64

P (S3 = 3) = P (Y1 = Y2 = Y3 = 1) =
1
2
× 1

4
× 1

8
=

1
64

(b) P (Sn = n) = P (Y1 = Y2 = · · · = Yn = 1) = (1/2)1+2+···+n = (1/2)n(n+1)/2.

(c) CLT can’t be used to approximate distribution of Sn, because the summands Y1, . . . , Yn

are not identically distributed.

(d) E[Yi] = (1/2)i and Var[Yi] = (1/2)i
(
1− (1/2)i

)
, so

E[Sn] =
n∑

i=1

E[Yi] =
n∑

i=1

(
1
2

)i

=
1− (1/2)n+1

1− (1/2)
− 1 = 2

(
1− (1/2)n+1

)
− 1

= 1− (1/2)n

Var[Sn] =
n∑

i=1

Var[Yi] =
n∑

i=1

(
1
2

)i

−
n∑

i=1

(
1
4

)i

= 1− (1/2)n −
(

1− (1/4)n+1

1− (1/4)
− 1

)
= 2− (1/2)n − (4/3)

(
1− (1/4)n+1

)
= (2/3)− (1/2)n + (1/3)(1/4)n

(e) E[Ȳn] = E[Sn/n] = E[Sn]/n = (1− (1/2)n) /n → 0 as n →∞.

Var[Ȳn] = Var[Sn/n] = Var[Sn]/n2 = ((2/3)− (1/2)n + (1/3)(1/4)n) /n2 → 0 as
n →∞.

This seems intuitively reasonable because P (Yi = 0) → 1 as n → ∞, so expect only
finitely many of the Yi to be non-zero, so that the limiting distribution of Yn/n will
be concentrated at zero with probability 1. (NB: Borel-Cantelli lemmas not covered
in this module.)
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2. (a) Memoryless property: for t, s > 0, P (T > t + s | T > t) = P (T > s).

Intuitively, this means that knowledge that an item whose lifetime is distributed as
T has already survived for time t does not alter the distribution of the remaining
lifetime from t onwards.

For exponential distribution,

P (T > t + s | T > t) =
P (T > t + s and T > t)

P (T > t)
=

P (T > t + s)
P (T > t)

=
e−λ(t+s)

e−λt
= e−λs

= P (T > s), as required.

(b) Weibull density: For x ≥ 0,

fX(x) =
d

dx

(
1− exp

{
−
(

x

θ

)β
})

= β

(
x

θ

)β−1 (1
θ

)
exp

{
−
(

x

θ

)β
}

=
β

θβ
xβ−1 exp

{
−
(

x

θ

)β
}

with fX(x) = 0 for x < 0.

For Weibull distribution,

P (X > a + b | X > a) =
P (X > a + b)

P (X > a)
=

exp
{
−
(

a+b
θ

)β
}

exp
{
−
(

a
θ

)β} = exp

{
aβ − (a + b)β

θβ

}

In the case β = 2,

P (X > a + b | X > a)
P (X > b)

=
exp

{
a2−(a+b)2

θ2

}
exp

{
−
(

b
θ

)2
} = exp

{
a2 + b2 − (a + b)2

θ2

}
= exp

{
−2ab

θ2

}

Ratio is not equal to 1, so distribution does not possess memoryless property.

Weibull distribution does possess the memoryless property when β = 1.

(c) For β = 2, θ = 1, have

g(a) = exp
{
a2 − (a + b)2

}
= exp

{
−2ab− b2

}
,

h(a) = exp {−2ab} .

Graphs:

Interpretation: Graph of g(a) is decreasing in a, so the older the component is, the
lower the probability that it will survive for a further time b, whatever the value of
b > 0. Newer components are better, in terms of remaining lifetime distribution.

Graph of h(a) is also decreasing in a, so the older the component, the greater the
factor by which its survival probabilities are reduced compared with a new component.
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3. (a) For g strictly increasing,

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P
(
X ≤ g−1(y)

)
= FX

(
g−1(y)

)
⇒ fY (y) = fX

(
g−1(y)

) d

dy
g−1(y)

For g strictly decreasing,

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P
(
X ≥ g−1(y)

)
= 1− FX

(
g−1(y)

)
⇒ fY (y) = −fX

(
g−1(y)

) d

dy
g−1(y)

In either case,

fY (y) = fX

(
g−1(y)

) ∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ .
(b) (i) Mean: E[X] =

∫ 2
0 x4/4 dx =

[
x5/20

]2
0 = 25/20 = 32/20 = 8/5 = 1.6.

Median m satisfies 0.5 =
∫m
0 x3/4 dx =

[
x4/16

]m
0 = m4/16, so m4 = 8, m =

80.25 ≈ 1.682.
Mode is at x = 2.

(ii) For 0 < x < 2,

F (x) =
∫ x

−∞
f(u) du =

∫ x

0

(
u3/4

)
du =

[
u4/16

]x
0

= x4/16

So in full,

F (x) =


0 x ≤ 0
x4/16 0 < x < 2
1 x ≥ 2

(iii) With Y =
√

(X + 2)/2, then for y > 1,

FY (y) = P (Y ≤ y) = P (
√

(X + 2)/2 ≤ y) = P (X ≤ 2y2 − 2) = FX(2(y2 − 1))

so that FY (y) =


0 y ≤ 1
(y2 − 1)4 1 < y <

√
2

1 y ≥
√

2

Differentiating,

fY (y) =

{
8y(y2 − 1)3 1 < y <

√
2

0 otherwise

Range is 1 < Y <
√

2.
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E[Y ] =
∫ √

2

1
8y2(y2 − 1)3 dy =

∫ √
2

1
8y2(y6 − 3y4 + 3y2 − 1) dy

=
∫ √

2

1
(8y8 − 24y6 + 24y4 − 8y2) dy =

[
8y9

9
− 24y7

7
+

24y5

5
− 8y3

3

]√2

1

=

[
8y3

(
y6

9
− 3y4

7
+

3y2

5
− 1

3

)]√2

1

= 16
√

2
(

8
9
− 12

7
+

6
5
− 1

3

)
− 8

(
1
9
− 3

7
+

3
5
− 1

3

)
=

16
√

2× 13
315

+
8× 16
315

≈ 1.3402
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4. (a) Cov[X, Y ] = E [(X − E[X]) (Y − E[Y ])]
Corr[X, Y ] = Cov[X, Y ]/

√
Var[X]Var[Y ]

Correlation values lie between -1 and +1; positive correlation indicates that the two
variables tend to increase together, negative correlation that as one increases, the
other decreases; the larger the absolute value of correlation, the stronger the linear
relationship. Correlation +1 and -1 indicate a perfect linear relationship between the
two variables; correlation 0 indicates no linear relationship.

(b) (i) Region of non-zero density:

(ii) Marginal density:

fY (y) =
∫ y

x=−y

e−y

2y
dx =

[
xe−y

2y

]y

x=−y

=
ye−y

2y
− −ye−y

2y
= e−y for y > 0

Conditional density:

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
=

e−y/2y

e−y
=

1
2y

for − y < x < y

Distribution of Y is exp(1); conditional distribution of X is Uniform(−y, y).

(iii) Expectations:

E[X] =
∫ ∞

y=0

∫ y

x=−y
x

e−y

2y
dx dy =

∫ ∞

y=0

[
x2e−y

4y

]y

x=−y

dy

=
∫ ∞

y=0

(
y2e−y

2y
− y2e−y

2y

)
dy = 0

E[Y ] =
∫ ∞

y=0
yfY (y) dy =

∫ ∞

y=0
ye−y dy

=
[
−ye−y]∞

y=0 +
∫ ∞

y=0
e−y dy = 0 +

[
−e−y]∞

y=0 = 1

(iv) Covariance:

E[XY ] =
∫ ∞

y=0

∫ y

x=−y
xy

e−y

2y
dx dy =

∫ ∞

y=0

[
x2e−y

4

]y

x=−y

dy

=
∫ ∞

y=0

(
y2e−y

4
− y2e−y

4

)
dy = 0

so that Cov[X, Y ] = E[XY ]− E[X]E[Y ] = 0− 0× 1 = 0.

(v) X and Y are not independent; the range of possible X values depends upon the
value of Y .
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5. (a) U = 2X + Y, V = 3X/Y , so

X =
Y V

3
⇒ U =

2Y V

3
+ Y = Y

(
2V

3
+ 1

)
=

Y

3
(2V + 3) ⇒ Y =

3U

2V + 3

and so X =
Y V

3
=
(

3U

2V + 3

)(
V

3

)
=

UV

2V + 3

Differentials:

∂x

∂u
=

v

2v + 3
∂x

∂v
=

u ((2v + 3)× 1− v × 2)
(2v + 3)2

=
3u

(2v + 3)2

∂y

∂u
=

3
2v + 3

∂y

∂v
=

(2v + 3)× 0− 3u× 2
(2v + 3)2

=
−6u

(2v + 3)2

Jacobian:

J =
(

v

2v + 3

)( −6u

(2v + 3)2

)
−
(

3
2v + 3

)(
3u

(2v + 3)2

)
=
−6uv − 9u

(2v + 3)3
=

−3u

(2v + 3)2

Density:

fU,V (u, v) = fX,Y (x, y)
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣
= (2/π) exp

{
−
((

uv

2v + 3

)2

+
(

3u

2v + 3

)2
)/

2

} ∣∣∣∣ −3u

(2v + 3)2

∣∣∣∣
=

6u

π(2v + 3)2
exp

{
−
(

u2
(
v2 + 9

)
2(2v + 3)2

)}
u, v > 0

Region of positive density:

(b) Marginal density of V :

fV (v) =
6

π(2v + 3)2

∫ ∞

u=0
u exp

{
−
(

u2
(
v2 + 9

)
2(2v + 3)2

)}
du

=
6

π(2v + 3)2

∫ ∞

u=0
u exp

{
−Au2

}
du with A =

v2 + 9
2(2v + 3)2

=
6

π(2v + 3)2
1

2A
=

6
π(2v + 3)2

(2v + 3)2

v2 + 9
=

6
π(v2 + 9)

v > 0
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6. (a) Differentiating,

MX(t) = E[etX ] M ′
X(t) = E[XetX ] M ′′

X(t) = E[X2etX ]

⇒ M ′
X(0) = E[X] M ′′

X(0) = E[X2]

and so Var[X] = E[X2]− (E[X])2 = M ′′
X(0)− (M ′

X(0))2, as required.

Repeated differentiation similarly gives M
(n)
X (0) = E[Xn], where M

(n)
X denotes the

nth derivative of MX .

With Y = a + bX,

MY (t) = E[etY ] = E[et(a+bX)] = E[eat × etbX ] = eatMX(bt)

(b) The cumulants κ1, κ2, . . . are defined to be the coefficients in the power series

KX(t) = κ1t +
κ2

2!
t2 +

κ3

3!
t3 + · · ·

κ1 is equal to the mean; κ2 is equal to the variance; κ3 is third central moment;
relationship between higher order cumulants and moments is more complicated.

(c) With Z ∼ N(0, 1),

MZ(t) = E[etZ ] =
∫ ∞

−∞
etz 1√

2π
e−z2/2 dz =

1√
2π

∫ ∞

−∞
etz−(z2/2) dz

=
1√
2π

∫ ∞

−∞
e−((z−t)2/2)+(t2/2) dz =

et2/2

√
2π

∫ ∞

−∞
e−(z−t)2/2 dz

Substituting u = z − t, so that du = dz, then

MZ(t) =
et2/2

√
2π

∫ ∞

−∞
e−u2/2 du = et2/2

∫ ∞

−∞
fZ(u) du = et2/2

since the standard normal density fZ integrates to 1.

Now for X = µ + σZ, have MX(t) = eµtMZ(σt) = eµte(σt)2/2 = eµt+(σ2/2)t2 .

Hence KX(t) = ln (MX(t)) = µt + (σ2/2)t2.

So in the case of the normal distribution we see that the first cumulant is equal to
the mean, the second cumulant is equal to the variance, and all higher cumulants are
zero.

In general, as stated in part (b), the first cumulant is the mean and the second
cumulant is variance, but higher cumulants not generally zero, for non-normal distri-
butions.

7



7. (a) For U =
√

X/n, have X = nU2, so that dx/du = 2nu. Hence for u ≥ 0,

fU (u) = fX(x)
∣∣∣∣dx

du

∣∣∣∣ = 1
2n/2 Γ

(
n
2

) (nu2)
n
2
−1 e−nu2/2 |2nu|

=
nn/2

2(n/2)−1 Γ
(

n
2

) un−1 e−nu2/2

as required.

(b) For −∞ < t < ∞, have

fT (t) =
∫ ∞

0
|u|
(

nn/2

2(n/2)−1 Γ
(

n
2

) un−1 e−nu2/2

)(
1√
2π

e−(ut)2/2
)

du

=
nn/2

2(n/2)−1 Γ
(

n
2

) √
2π

∫ ∞

0
un e−(n+t2)u2/2 du

Substitute w = u2, so that dw = 2udu, and then

fT (t) =
nn/2

2(n/2)−1 Γ
(

n
2

) √
2π

∫ ∞

0
wn/2 e−(n+t2)w/2 dw

2
√

w

=
nn/2

2n/2 Γ
(

n
2

) √
2π

∫ ∞

0
w(n−1)/2 e−(n+t2)w/2 dw

Set α = (n + 1)/2 and λ = (n + t2)/2. Then

fT (t) =
nn/2

2n/2 Γ
(

n
2

) √
2π

∫ ∞

0
wα−1 e−λw dw

=
nn/2

2n/2 Γ
(

n
2

) √
2π

Γ(α)
λα

=
nn/2

2n/2 Γ
(

n
2

) √
2π

Γ
(

n+1
2

)
(

n+t2

2

)(n+1)/2

=
nn/2

√
π

Γ
(

n+1
2

)
Γ
(

n
2

) (n + t2)−(n+1)/2

=
Γ
(

n+1
2

)
Γ
(

n
2

) √
nπ

(
1 +

t2

n

)−(n+1)/2
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