MATH764, Summer 2004. Solutions

1. [Finite probability models and the binomial distribution were discussed in depth.]
(a) Obviously, $p=1 / 3$ is the probability that A wins a round. (That happens only if $X=2$.) The expected gain for A equals $(1 / 3)(a+b)$, and we must solve the following equation with respect to b

$$
a=\frac{1}{3} \times(a+b)
$$

given $a=1$. Now $b=2 a=2$.
(b) Let Z be the number of the rounds, out of 5 , which are in favour of A. Then $Z \sim \operatorname{Bin}(5,1 / 3)$. Probability that A receives the prize equals
$P\{Z \geq 3\}=P\{Z=3\}+P\{Z=4\}+P\{Z=5\}=\frac{10 \cdot 4}{3^{5}}+\frac{5 \cdot 2}{3^{5}}+\frac{1}{3^{5}}=\frac{17}{81} \approx 0.2099$.
Hence, for the given value $a=1$ equation $a=\frac{17}{81}(a+b)$ results in $b=\frac{64}{17} \approx 3.7647$.
(c) Let us continue the game with 3 fictitious rounds. B will win the prize only if he wins all these rounds. Since $P\{\mathrm{~B}$ wins a round $\}=\frac{2}{3}$, the chance for B to win the prize equals $\left(\frac{2}{3}\right)^{3}=\frac{8}{27}$, and the prize must be divided proportionally to the chances in the ratio 8:19.
Finally, B receives

$$
\frac{8}{27}(a+b)=\frac{8}{27}\left(1+\frac{64}{17}\right)=\frac{24}{17} \approx 1.4118
$$

and A receives

$$
\frac{19}{27}(a+b)=\frac{57}{17} \approx 3.3529
$$

(d) According to the CLT, the number of rounds, V, that the player A wins, satisfies the approximate relation

$$
P\{V \leq x\}=P\left\{\frac{V-n p}{\sqrt{n p(1-p)}} \leq \frac{x-n p}{\sqrt{n p(1-p)}}\right\} \approx \Phi\left(\frac{x-n p}{\sqrt{n p(1-p)}}\right)
$$

where $p=1 / 3$.
If $x=n / 2$ then probability that the player A will lose the whole game approximately equals

$$
P\{V \leq n / 2\} \approx \Phi\left(\frac{n / 6}{\sqrt{n \cdot 2 / 9}}\right)=\Phi\left(\frac{\sqrt{n}}{2 \sqrt{2}}\right) \rightarrow 1 \text { when } n \rightarrow \infty
$$

thus probability that A wins the prize goes to 0 .

2. [Similar to problems discussed in class.]

(a) $G(s)=\sum_{k=0}^{\infty} s^{k} \frac{\lambda^{k}}{k!} e^{-\lambda}$, by the definition. Now

$$
G(s)=e^{-\lambda} \sum_{k=0}^{\infty} \frac{(s \lambda)^{k}}{k!}=e^{-\lambda} \cdot e^{s \lambda}=e^{\lambda(s-1)} .
$$

(b) We know that $P\{X=i\}=\frac{\lambda^{i}}{i!} e^{-\lambda}$ and $P\{Y=i\}=\frac{\lambda^{i}}{i!} e^{-\lambda}, i=0,1,2, \ldots$ Using the theorem on the sum of RVs we obtain

$$
\begin{aligned}
P\{Z= & k\}=\sum_{i=0}^{k} P\{X=i\} P\{Y=k-i\}=\sum_{i=0}^{k} \frac{\lambda^{i}}{i!} e^{-\lambda} \frac{\lambda^{k-i}}{(k-i)!} e^{-\lambda} \\
& =e^{-2 \lambda} \frac{\lambda^{k}}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!}=e^{-2 \lambda} \frac{\lambda^{k}}{k!} 2^{k}=\frac{(2 \lambda)^{k}}{k!} e^{-2 \lambda} .
\end{aligned}
$$

Here we have used the equality $\sum_{i=0}^{k} \frac{k!}{i!(k-i)!}=2^{k}$ which follows, for instance, from the total sum of the binomial probabilities:

$$
\sum_{i=0}^{k} \frac{k!}{i!(k-i)!}\left(\frac{1}{2}\right)^{i}\left(\frac{1}{2}\right)^{k-i}=1
$$

Therefore, Z has the Poisson distribution with parameter 2λ.
The students who use generating functions get the full credit.
(c) The number of particles ("events") during a fixed time interval is usually Poisson distributed. Hence $X \sim \operatorname{Poisson}(1000)$, because $E[X]=\lambda$ coincides with the parameter of the Poisson distribution.
(d) Since $\lambda=1000$ is big we can use the normal approximation:

$$
\begin{gathered}
P\{900<X<1000\}=P\left\{\frac{900-1000}{\sqrt{1000}}<\frac{X-1000}{\sqrt{1000}}<0\right\} \\
\approx P\{-3.162<Z<0\}=\Phi(3.162)-0.5 \approx 0.4992
\end{gathered}
$$

(Here Z is a standard normal RV.)

3. [Standard.]

The CDF is defined by $F(x)=P(X \leq x)$, the density by

$$
P(a<X \leq b)=\int_{a}^{b} f(x) d x
$$

Relationships:

$$
f(x)=F^{\prime}(x), \quad F(x)=\int_{-\infty}^{x} f(u) d u
$$

(a)

$$
\int_{0}^{\pi} \sin x d x=[-\cos x]_{0}^{\pi}=2, \text { so } K=\frac{1}{2} .
$$

(b)

$$
\begin{gathered}
F(x)=\int_{0}^{x} \frac{1}{2} \sin u d u=\frac{1}{2}[-\cos u]_{0}^{x}=\frac{1}{2}[-\cos x+1] . \\
F(x)=\frac{1}{2}(1-\cos x), \quad 0<x<\pi .
\end{gathered}
$$

(c) The range of Y is $(0, \sqrt{\pi})$.

$$
\begin{gathered}
F_{Y}(y)=P(Y \leq y)=P(\sqrt{X} \leq y)=P\left(X \leq y^{2}\right)=F\left(y^{2}\right)=\frac{1}{2}\left(1-\cos \left(y^{2}\right)\right) . \\
F_{Y}(y)=\frac{1}{2}\left(1-\cos \left(y^{2}\right)\right), \quad 0<y<\sqrt{\pi} .
\end{gathered}
$$

Density:

$$
f_{Y}(y)=F_{Y}^{\prime}(y)=\frac{1}{2} \sin \left(y^{2}\right) 2 y=y \sin \left(y^{2}\right), \quad 0<y<\sqrt{\pi}
$$

One can also use the transformation method.

4. [Similar to homework.]

(a) Focus first on X. The cdf is

$$
F_{X}(x)=1-P(X>x)=1-e^{-\lambda x} .
$$

Therefore the density is

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)=\lambda e^{-\lambda x} .
$$

In the same way we obtain

$$
f_{Y}(y)=\mu e^{-\mu y}
$$

By independence the joint density is

$$
f(x, y)=\lambda \mu e^{-(\lambda x+\mu y)} .
$$

(b) The inverse transformation is

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

The Jacobian is

$$
\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\
\frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right]=r .
$$

Applying now the formula for the transformed density we obtain

$$
f_{R \Theta}(r, \theta)=f(r \cos \theta, r \sin \theta) r
$$

$$
=\lambda \mu r e^{-(\lambda r \cos \theta+\mu r \sin \theta)}, \quad r>0,0 \leq \theta \leq \pi / 2
$$

(c) The marginal density of Θ is

$$
f_{\Theta}(\theta)=\int_{0}^{\infty} f_{R \Theta}(r, \theta) d r=\lambda \mu \int_{0}^{\infty} r e^{-r(\lambda \cos \theta+\mu \sin \theta)} d r .
$$

Set $\alpha=\lambda \cos \theta+\mu \sin \theta$ and use the formula given in the problem to obtain

$$
f_{\Theta}(\theta)=\frac{\lambda \mu}{(\lambda \cos \theta+\mu \sin \theta)^{2}} .
$$

(d) If $\lambda=\mu$ then

$$
f_{\Theta}(\theta)=\frac{1}{(\cos \theta+\sin \theta)^{2}}=\frac{1}{1+\sin 2 \theta} .
$$

Now

$$
\begin{gathered}
E[\Theta]=\int_{0}^{\pi / 2} \frac{\theta d \theta}{1+\sin 2 \theta}=\frac{1}{4} \int_{0}^{\pi} \frac{x d x}{1+\sin x} \\
=\frac{1}{4}[-\pi \tan (-\pi / 4)+2 \ln |\cos (-\pi / 4)|-2 \ln |\cos (\pi / 4)|]=\frac{\pi}{4} .
\end{gathered}
$$

The students who notice that $f_{\Theta}(\theta)$ is symmetric on $[0, \pi / 2]$ and deduce that $E[\Theta]=$ $\pi / 4$ will be awarded full credit.

5. [Bookwork and similar to homework.]

(a) The moment generating function of X is

$$
M_{X}(t)=E e^{t X}=\sum_{k=0}^{\infty} p(k) e^{t k}
$$

provided the expectation exists.
(b) Using this definition, we have

$$
M_{Y}(t)=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k+1} e^{t k}=\frac{1}{2} \sum_{k=0}^{\infty}\left(\frac{e^{t}}{2}\right)^{k}=\frac{1}{2} \times \frac{1}{1-\frac{e^{t}}{2}}=\frac{1}{2-e^{t}},
$$

where we used the formula

$$
\sum_{k=0}^{\infty} s^{k}=\frac{1}{1-s}, \quad|s|<1
$$

with

$$
s=\frac{e^{t}}{2}
$$

This means that the admissible values of t are such that

$$
\frac{e^{t}}{2}<1, \quad \text { i.e. } \quad t<\ln 2
$$

(c) To find $E Y$, we use the formula

$$
E Y=\left.M_{Y}^{\prime}(t)\right|_{t=0}
$$

We have

$$
M_{Y}^{\prime}(t)=\left[\frac{1}{2-e^{t}}\right]^{\prime}=\frac{e^{t}}{\left(2-e^{t}\right)^{2}}
$$

so

$$
E Y=\frac{e^{0}}{\left(2-e^{0}\right)^{2}}=\frac{1}{(2-1)^{2}}=1
$$

To find $E Y^{2}$, we use $E Y^{2}=\left.M_{Y}^{\prime \prime}(t)\right|_{t=0}$. We have

$$
M_{Y}^{\prime \prime}(t)=\frac{d}{d t}\left[e^{t}\left(2-e^{t}\right)^{-2}\right]=e^{t}\left(2-e^{t}\right)^{-2}+2 e^{2 t}\left(2-e^{t}\right)^{-3}
$$

Hence

$$
E Y^{2}=1+2=3
$$

(d) Therefore, $\operatorname{Var} Y=E Y^{2}-(E Y)^{2}=3-1=2$.
6. [Parts (a) and (b) fairly standard, (c) similar to bookwork and homework.]
(a) $\mu=-1 \cdot \frac{1}{2}+3 \cdot \frac{1}{2}=1 ; \quad E X^{2}=\frac{1}{2}+\frac{9}{2}=5 ; \quad \sigma^{2}=\operatorname{Var} X=E X^{2}-(E X)^{2}=4$. (b)

$$
\begin{gathered}
P\{\ln (\bar{X})>0\}=P\{\bar{X}>1\}=P\left\{\sum_{i=1}^{200} X_{i}>200\right\} \\
=P\left\{\frac{\sum_{i=1}^{200} X_{i}-200 \cdot 1}{2 \sqrt{200}}>\frac{200-200 \cdot 1}{2 \sqrt{200}}\right\} \approx P\{Z>-0\}=0.5
\end{gathered}
$$

(Here Z has standard normal distribution.)
(c)

$$
P\left\{\sum_{i=1}^{n} X_{i}>190\right\} \approx P\left\{Z>\frac{190-n \cdot 1}{2 \sqrt{n}}\right\}>0.99
$$

The 99% critical value is 2.33 , so we want to find n such that

$$
\frac{190-n}{2 \sqrt{n}}<-2.33
$$

Set $n=x^{2}$ and solve equation $190-x^{2}=-4.66 x$, i.e.

$$
x^{2}-4.66 x-190=0
$$

$\Delta=4.66^{2}+4 \cdot 190=781.72 ; \sqrt{\Delta}=27.96 ;$

$$
x_{1}=\frac{4.66+27.96}{2}=16.31 ; \quad x_{2}=\frac{4.66-27.96}{2}=-11.65 .
$$

Thus, $n_{1}=266.02 ; n_{2}=135.72$. Clearly, $190-n_{2}>0$ so n_{2} does not satisfy our requirement. Thus the minimum n is 267 .
7. [Bookwork.] (a) $\Gamma(t)=\int_{0}^{\infty} u^{t-1} e^{-u} d u,(t>0)$ by definition.

$$
\begin{gathered}
\Gamma(1)=\Gamma(2)=1 ; \quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} ; \\
\Gamma(t+1)=t \Gamma(t), \quad t>0 ; \quad \Gamma(n)=(n-1)!, \text { if } n>0 \text { is integer. }
\end{gathered}
$$

(b) Definition. If Z is a standard normal random variable, the distribution of $U=Z^{2}$ is called chi-square distribution with 1 degree of freedom. Notation: $U \sim \chi_{1}^{2}$. If $U_{1}, U_{2}, \ldots, U_{m}$ are independent χ_{1}^{2} random variables, the distribution of $U=$ $U_{1}+U_{2}+\ldots+U_{m}$ is called the chi-square distribution with m degrees of freedom. Notation: $U \sim \chi_{m}^{2}$.
(c) We know that density of V is

$$
f_{V}(v)=\frac{\left(\frac{1}{2}\right)^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} v^{n / 2-1} e^{-v / 2}
$$

Consider $A=V / n$. Using transformation method

$$
f_{A}(a)=f_{V}(n a) n=\frac{\left(\frac{1}{2}\right)^{n / 2}}{\Gamma\left(\frac{n}{2}\right)}(n a)^{n / 2-1} e^{-n a / 2} n
$$

Similarly, setting $B=U / m$, we obtain

$$
f_{B}(b)=\frac{\left(\frac{1}{2}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right)}(m b)^{m / 2-1} e^{-m b / 2} m .
$$

Since A and B are independent, we can use the formula for the density of the quotient $W=B / A$:

$$
\begin{gathered}
f_{W}(w)=\int_{0}^{\infty}|a| f_{A}(a) f_{B}(w a) d a \\
=\int_{0}^{\infty} a \frac{\left(\frac{1}{2}\right)^{\frac{n+m}{2}}}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{m}{2}\right)}(n a)^{n / 2-1} n(m w a)^{m / 2-1} m e^{-n a / 2} e^{-m w a / 2} d a \\
=\frac{\left(\frac{1}{2}\right)^{\frac{n+m}{2}}}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{m}{2}\right)} n^{n / 2-1}(m w)^{m / 2-1} n m \int_{0}^{\infty} a^{n / 2+m / 2-1} e^{-\frac{1}{2}(n+m w) a} d a .
\end{gathered}
$$

Note that Gamma density is

$$
f_{\alpha, \lambda}(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} .
$$

In our case $\lambda=\frac{1}{2}(n+m w)$ and $\alpha=\frac{n+m}{2}$ and a plays the role of x. So

$$
\begin{gathered}
f_{W}(w)=\frac{\left(\frac{1}{2}\right)^{\frac{n+m}{2}}}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{m}{2}\right)} n^{n / 2} m^{m / 2} w^{\frac{m}{2}-1} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\left[\frac{1}{2}(n+m w)\right]^{\frac{n+m}{2}}} \\
=\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{m}{2}\right)}\left(\frac{m}{n}\right)^{m / 2} w^{\frac{m}{2}-1}\left(1+\frac{m}{n} w\right)^{-\frac{n+m}{2}} .
\end{gathered}
$$

