1. Let X be the uniform discrete RV taking values 0 , 1 , and 2 equiprobably, and $Y=X+1(\bmod 3)$, i.e. $Y=X+1$ if $X<2$ and $Y=0$ if $X=2$.

Two players A and B pay the entrance fees $£ a$ and $£ b$ correspondingly and play the following game: if $X>Y$ then A receives all the money ($a+b$ pounds); if $X<Y$ then B receives all the money. Let $a=1$.
(a) Calculate the fair value of b, such that the entrance fee equals expected gain for each participant.
(b) A modification of this game is as follows. The random pairs (X, Y) described above are realized in $n=5$ independent rounds, and A receives $(a+b)$ pounds if he wins 3 or more rounds; similarly B receives $(a+b)$ pounds if he wins 3 or more rounds. Calculate the fair value of b, if $a=1$, as previously.
(c) Let $a=1$ and b be as in item (b). The game described in (b) began, A won the first two rounds, and the players had to stop playing, before the game actually finished. What is the fair division of the prize $(a+b)$?
(d) Let n be a very big odd number and the prize in the game (b) goes to the person who wins more than a half of the rounds. Using the Central Limit Theorem, show that probability of the prize to go to the player A , approaches 0 as $n \rightarrow \infty$.
2. (a) Derive the Probability Generating Function for a Poisson (λ) random variable.
(b) Let X and Y be two independent Poisson random variables with the same parameter $\lambda>0$. Find the Probability Mass Function for $Z=X+Y$.
(c) Let X be the number of particles registered by a Geiger counter during $1 / 2$ hour. It is known that $E[X]=1000$. Suggest a proper probability distribution for X.
(d) Using the Central Limit Theorem, evaluate $P\{900<X<1000\}$, where X is the random variable described in (c).
3. Suppose X is a continuous random variable. State the definition of the Cumulative Distribution Function and the density function and the relationship between them (no more than 80 words).

Suppose X is a continuous random variable with density

$$
f(x)=K \sin (x), \quad 0<x<\pi
$$

(a) Find the constant K.
(b) Find the Cumulative Distribution Function of X.
(c) Find the density and the Cumulative Distribution Function of $Y=\sqrt{X}$. What is the range of Y ?
4. In a physical experiment particles hit a plane at random. The coordinates X and Y of the impact points can be viewed as independent exponential random variables defined by

$$
P(X>x)=e^{-\lambda x}, x \geq 0, \quad P(Y>y)=e^{-\mu y}, y \geq 0 .
$$

(a) Find the marginal densities of X and Y and the joint density of X and Y.
(b) Consider the polar coordinates

$$
R=\sqrt{X^{2}+Y^{2}}, \quad \Theta=\tan ^{-1}\left(\frac{Y}{X}\right) .
$$

Find the joint density of R and Θ. Indicate the range of R and Θ.
(c) Find the marginal density of Θ.
(d) Calculate $E[\Theta]$ for the case $\lambda=\mu$.

You can use without verification the following formulae

$$
\begin{gathered}
\int_{0}^{\infty} r e^{-r \alpha} d r=\alpha^{-2}, \quad \alpha>0, \\
\int \frac{x d x}{1+\sin x}=-x \tan \left(\frac{\pi}{2}-\frac{x}{2}\right)+2 \ln \left|\cos \left(\frac{\pi}{4}-\frac{x}{2}\right)\right| .
\end{gathered}
$$

5. Suppose X is a discrete random variable with Probability Mass Function

$$
P(X=k)=p(k), \quad k=0,1,2, \ldots
$$

(a) State the definition of the Moment Generating Function of X.
(b) Consider a discrete random variable Y with Probability Mass Function

$$
p(k)=\left(\frac{1}{2}\right)^{k+1}, \quad k=0,1,2, \ldots
$$

Find $M_{Y}(t)$, the Moment Generating Function of Y. Indicate the range of values of t for which $M_{Y}(t)$ exists.
(c) Using the Moment Generating Function find $E[Y]$ and $E\left[Y^{2}\right]$.
(d) Calculate Var Y.
6. The random variables X_{1}, \ldots, X_{n} are independent and identically distributed, with the Probability Mass Function $P(X=-1)=P(X=+3)=0.5$.
(a) Calculate $\mu=E[X]$ and $\sigma^{2}=\operatorname{Var} X$.
(b) For the case $n=200$ use the Central Limit Theorem to approximate the probability

$$
P\{\ln (\bar{X})>0\},
$$

where

$$
\bar{X}=\frac{1}{200} \sum_{i=1}^{200} X_{i}
$$

is the sample mean and \ln denotes the natural logarithm (i.e. logarithm with base e).
(c) Find the minimum n for which

$$
P\left\{\sum_{i=1}^{n} X_{i}>190\right\}>0.99 .
$$

7. (a) State the definition and the main properties of the gamma-function $\Gamma(t)$.
(b) State the definition of a chi-square distribution in terms of standard normal random variables.
(c) Suppose U and V are independent chi-square random variables with m and n degrees of freedom, respectively. Show that the random variable W defined by

$$
W=\frac{U / m}{V / n}
$$

has density

$$
f_{W}(w)=\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)}\left(\frac{m}{n}\right)^{m / 2} w^{\frac{m}{2}-1}\left(1+\frac{m}{n} w\right)^{-\frac{m+n}{2}}, \quad w>0 .
$$

Hint: Recall that the density of a chi-square distribution with n degrees of freedom is

$$
f_{V}(v)=\frac{(1 / 2)^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} v^{\frac{n}{2}-1} e^{-v / 2}
$$

Recall also that if A and B are independent random variables, then the density of the quotient $C=B / A$ is

$$
f_{C}(c)=\int|a| f_{A}(a) f_{B}(c a) d a
$$

Finally, recall that the gamma density is

$$
f_{\alpha, \lambda}(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, x>0, \quad \alpha, \lambda>0
$$

[NORMAL DISTRIBUTION TABLE]

