MATH764 January 2006 Exam Solutions

All questions similar to seen exercises except where marked as Bookwork (B) or Unseen (U).

1. (a) (i) $\operatorname{Pr}(X=0)=\operatorname{Pr}$ (First ball drawn is red) $=1 / 2$
$\operatorname{Pr}(X=1)=\operatorname{Pr}($ First white, second red $)=(1 / 2) \times(3 / 5)=3 / 10$
$\operatorname{Pr}(X=2)=\operatorname{Pr}($ First two white, third red $)=(1 / 2) \times(2 / 5) \times(3 / 4)=3 / 20$
$\operatorname{Pr}(X=3)=\operatorname{Pr}($ First three white $)=(1 / 2) \times(2 / 5) \times(1 / 4)=1 / 20$
(ii) $E[X]=(1 / 2) \times 0+(3 / 10) \times 1+(3 / 20) \times 2+(1 / 20) \times 3=3 / 4$
$\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=\left((1 / 2) \times 0^{2}+(3 / 10) \times 1^{2}+(3 / 20) \times 2^{2}+(1 / 20) \times 3^{2}\right)-$
$(3 / 4)^{2}=(27 / 20)-(9 / 16)=63 / 80=0.7875$
(b) (i) For drawing with replacement, the probability of drawing a red ball is $1 / 2$ at each draw and successive draws are independent, so the probability of drawing y white balls followed by a red ball is $P(Y=y)=(1 / 2) \times(1-(1 / 2))^{y}=(1 / 2)^{y+1}$ for $y=0,1,2, \ldots$. That is, $Y+1$ is geometrically distributed with success probability $p=1 / 2$. Hence $E[Y]=(1 / p)-1=1, \operatorname{Var}[Y]=(1-p) / p^{2}=2$.
(ii) Now the event $V=v$ means that draw number $v+1$ yields a red ball, while draws 1 to v yield 1 red, $v-1$ white balls. The probability of this event is, for $v=1,2,3, \ldots$,

$$
P(V=v)=\left(\binom{v}{1}\left(\frac{1}{2}\right)^{v-1} \times \frac{1}{2}\right) \times \frac{1}{2}=v\left(\frac{1}{2}\right)^{v+1} .
$$

$V+1$ has Negative Binomial distribution with parameters $\left(2, \frac{1}{2}\right)$, so that from (i) above, $E[V]=2 E[Y+1]-1=3, \operatorname{Var}[V]=2 \operatorname{Var}[Y]=4$.
2. (a) For $t \geq 0$,

$$
\begin{aligned}
F_{T}(t) & =\int_{0}^{t} \lambda \mathrm{e}^{-\lambda u} d u \\
& =\left[\mathrm{e}^{-\lambda u}\right]_{0}^{t} \\
& =1-\mathrm{e}^{-\lambda t} \quad \text { for } t \geq 0 \\
F_{T}(t) & =0 \quad \text { for } t<0 \\
E[T] & =\int_{-\infty}^{\infty} t f(t) d t \\
& =\int_{0}^{\infty} t \lambda \mathrm{e}^{-\lambda t} d t \\
& =\left[-t \mathrm{e}^{-\lambda t}\right]_{0}^{\infty}+\int_{0}^{\infty} \lambda \mathrm{e}^{-\lambda t} d t \\
& =0+\left[\frac{\mathrm{e}^{-\lambda t}}{-\lambda}\right]_{0}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =0+\frac{1}{\lambda} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Median m satsfies

$$
\begin{aligned}
F_{T}(m) & =0.5 \\
1-\mathrm{e}^{-\lambda m} & =0.5 \\
-\lambda m & =\ln (0.5)=-\ln (2) \\
m & =\ln (2) / \lambda
\end{aligned}
$$

Lower quartile:

$$
\begin{aligned}
F_{T}(m) & =0.25 \\
1-\mathrm{e}^{-\lambda m} & =0.25 \\
-\lambda m & =\ln (0.75)=-\ln (4 / 3) \\
m & =\ln (4 / 3) / \lambda
\end{aligned}
$$

Upper quartile:

$$
\begin{aligned}
F_{T}(m) & =0.75 \\
1-\mathrm{e}^{-\lambda m} & =0.75 \\
-\lambda m & =\ln (0.25)=-\ln (4) \\
m & =\ln (4) / \lambda
\end{aligned}
$$

(b) (i) Have $0 \leq T<\infty$ and $Y=1-\mathrm{e}^{-2 T}$, so that $0 \leq Y<1$.
(ii) For $0 \leq y<1$,

$$
\begin{aligned}
\operatorname{Pr}(Y \leq y) & =\operatorname{Pr}\left(1-\mathrm{e}^{-2 T} \leq y\right) \\
& =\operatorname{Pr}\left(\mathrm{e}^{-2 T} \geq 1-y\right) \\
& =\operatorname{Pr}(-2 T \geq \ln (1-y)) \\
& =\operatorname{Pr}(T \leq-(1 / 2) \ln (1-y)) \\
& =F_{T}(-(1 / 2) \ln (1-y)) \\
& =1-\mathrm{e}^{\lambda(1 / 2) \ln (1-y)} \\
& =1-\mathrm{e}^{2 \ln (1-y)} \\
& =1-(1-y)^{2} \\
F_{Y}(y) & = \begin{cases}0 & y<0 \\
1-(1-y)^{2} & 0 \leq y<1 \\
1 & y \geq 1\end{cases}
\end{aligned}
$$

(iii) For $0 \leq y<1$,

$$
f_{Y}(y)=\frac{d}{d y}\left(1-(1-y)^{2}\right)
$$

$$
\begin{aligned}
& =2(1-y) \\
f_{Y}(y) & = \begin{cases}2(1-y) & 0 \leq y<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
E[Y] & =\int_{0}^{1} 2 y(1-y) d y=\left[y^{2}-\frac{2 y^{3}}{3}\right]_{0}^{1}=1-\frac{2}{3}=\frac{1}{3} \\
E\left[Y^{2}\right] & =\int_{0}^{1} 2 y^{2}(1-y) d y=\left[\frac{2 y^{3}}{3}-\frac{y^{4}}{2}\right]_{0}^{1}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6} \\
\operatorname{Var}[Y] & =\frac{1}{6}-\left(\frac{1}{3}\right)^{2}=\frac{1}{18}
\end{aligned}
$$

Median:

$$
\begin{aligned}
F_{Y}(m) & =0.5 \\
1-(1-m)^{2} & =0.5 \\
(1-m)^{2} & =0.5 \\
1-m & =1 / \sqrt{2} \\
m & =1-(1 / \sqrt{2})=0.2929
\end{aligned}
$$

3. (a) $\operatorname{Cov}[X, Y]=E[(X-E[X])(Y-E[Y])]$
$\operatorname{Corr}[X, Y]=\operatorname{Cov}[X, Y] / \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}$
Correlation values lie between -1 and +1 ; positive correlation indicates that the two variables tend to increase together, negative correlation that as one increases, the other decreases; the larger the absolute value of correlation, the stronger the linear relationship. Correlation +1 and -1 indicate a perfect linear relationship between the two variables; correlation 0 indicates no linear relationship.
(b) (i) Marginal mass functions:

$$
\begin{aligned}
& \operatorname{Pr}(X=2)=0.5, \operatorname{Pr}(X=4)=0.5 \\
& \operatorname{Pr}(Y=0)=0.3, \operatorname{Pr}(Y=1)=0.3, \operatorname{Pr}(Y=2)=0.4 \\
& E[X]=0.5 \times 2+0.5 \times 4=3 ; E[Y]=0.3 \times 0+0.3 \times 1+0.4 \times 2=1.1 \\
& \operatorname{Var}[X]=\left(0.5 \times 2^{2}+0.5 \times 4^{2}\right)-3^{2}=10-9=1 \\
& \operatorname{Var}[Y]=\left(0.3 \times 0^{2}+0.3 \times 1^{2}+0.4 \times 2^{2}\right)-1.1^{2}=1.9-1.21=0.69
\end{aligned}
$$

(ii) $\operatorname{Cov}[X, Y]=(0.1 \times 0 \times 2+0.1 \times 1 \times 2+0.3 \times 2 \times 2+0.2 \times 0 \times 4+0.2 \times 1 \times 4$ $+0.1 \times 2 \times 4)-3 \times 1.1=3-3.3=-0.3$
$\operatorname{Corr}[X, Y]=-0.3 / \sqrt{1 \times 0.69} \approx-0.3612$
(iii) Correlation value indicates a weak/moderate negative relationship between X and Y, as can be seen from the joint mass function, where the smallest probability values of 0.1 are associated with (X, Y) pairs where either X and Y are both small or X and Y are both large.
(iv) $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]=1+0.69-2 \times 0.3=1.09$
$\operatorname{Var}[X-Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]-2 \operatorname{Cov}[X, Y]=1+0.69+2 \times 0.3=2.29$
4. (a)

$$
\begin{aligned}
\int f(x, y) d y d x & =k \int_{x=0}^{1} \int_{y=0}^{1} x(1-x)+y(1-y) d y d x \\
& =k\left(\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{x=0}^{1}+\left[\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{y=0}^{1}\right)=k\left(\frac{1}{6}+\frac{1}{6}\right)=\frac{k}{3}
\end{aligned}
$$

So $k=3$.
Marginals:

$$
\begin{aligned}
f_{X}(x) & =\int_{y=0}^{1} f(x, y) d y=\int_{y=0}^{1} 3(x(1-x)+y(1-y)) d y \\
& =3\left[x(1-x) y+\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{y=0}^{1} \\
& =3\left(x(1-x)+\frac{1}{6}\right)=3 x(1-x)+\frac{1}{2}
\end{aligned}
$$

$$
\text { By symmetry, } f_{Y}(y)=3 y(1-y)+\frac{1}{2}
$$

(b) Inverting the transformation,

Region of positive density:

$$
\begin{aligned}
& x=(u+v) / 2, \quad \frac{d x}{d u}=\frac{1}{2}, \quad \frac{d x}{d v}=\frac{1}{2}, \\
& y=(v-u) / 2, \quad \frac{d y}{d u}=-\frac{1}{2}, \quad \frac{d y}{d v}=\frac{1}{2}, \\
& \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right|=\frac{1}{2} \\
& f_{U, V}(u, v)=f_{X, Y}((u+v) / 2,(v-u) / 2)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \\
& =3\left(\frac{1}{2}(u+v)\left(1-\frac{1}{2}(u+v)\right)+\frac{1}{2}(v-u)\left(1-\frac{1}{2}(v-u)\right)\right) \times \frac{1}{2} \\
& =(3 / 8)((u+v)(2-(u+v))+(v-u)(2-(v-u))) \\
& =(3 / 8)\left(2(u+v+v-u)-(u+v)^{2}-(v-u)^{2}\right) \\
& =(3 / 8)\left(4 v-2 u^{2}-2 v^{2}\right) \\
& =(3 / 2) v-(3 / 4)\left(u^{2}+v^{2}\right)
\end{aligned}
$$

5. (a) Differentiating $G_{U}(s)=E\left[s^{U}\right]$ with respect to s,

$$
\begin{aligned}
& G_{U}^{\prime}(s)=E\left[U s^{U-1}\right] \\
& G_{U}^{\prime \prime}(s)=E\left[U(U-1) s^{U-2}\right] \\
& \text { so that } G_{U}^{\prime}(1)=E[U] \\
& G_{U}^{\prime \prime}(1)=E[U(U-1)]
\end{aligned}
$$

and so
$G^{\prime \prime}(1)+G^{\prime}(1)-\left(G_{U}^{\prime}(1)\right)^{2}=E[U(U-1)]+E[U]-(E[U])^{2}=E\left[U^{2}\right]-(E[U])^{2}=\operatorname{Var}[U]$ as required.
(b)

$$
\begin{aligned}
G_{V}(s) & =\sum_{k=1}^{\infty} s^{k}\left(\frac{1}{2^{k} k \ln (2)}\right)=\frac{1}{\ln (2)} \sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{s}{2}\right)^{k} \\
& =\frac{1}{\ln (2)} \ln \left(\frac{1}{1-(s / 2)}\right)=\ln \left(\frac{2}{2-s}\right) / \ln (2) \\
& =\frac{\ln (2)-\ln (2-s)}{\ln (2)}=1-\frac{\ln (2-s)}{\ln (2)}
\end{aligned}
$$

(c) Differentiating,

$$
\begin{aligned}
G_{V}^{\prime}(s) & =-\left(\frac{1}{2-s}\right) \times(-1) \times \frac{1}{\ln (2)}=\frac{1}{\ln (2)}\left(\frac{1}{2-s}\right) \Rightarrow G^{\prime}(1)=\frac{1}{\ln (2)} \\
G_{V}^{\prime \prime}(s) & =\frac{1}{\ln (2)}\left(\frac{1}{2-s}\right)^{2} \Rightarrow G^{\prime \prime}(1)=\frac{1}{\ln 2}
\end{aligned}
$$

so that

$$
E[V]=\frac{1}{\ln (2)}, \quad \operatorname{Var}[V]=\frac{1}{\ln (2)}+\frac{1}{\ln (2)}-\left(\frac{1}{\ln (2)}\right)^{2}=\frac{2 \ln (2)-1}{(\ln (2))^{2}}
$$

6. (a) Since the X_{i} are independent, identically distributed, and have finite variance, we can apply the CLT, and hence approximately have $\bar{X} \sim N(9,9 / n)$.
(b) Using the CLT approximation, we require to find n such that $P(\bar{X}>9.05)=0.01$, which is approximately equivalent to

$$
\begin{aligned}
P\left(Z>\frac{9.05-9}{\sqrt{9 / n}}\right) & =0.01 \\
\Rightarrow P\left(Z<\frac{9.05-9}{\sqrt{9 / n}}\right) & =0.99 \\
\Rightarrow \frac{0.05}{\sqrt{9 / n}} & =2.33 \\
0.05 & =2.33 \sqrt{9 / n}=6.99 / \sqrt{n} \\
\Rightarrow \sqrt{n} & =6.99 / 0.05=139.8 \\
\Rightarrow n & =19544.04
\end{aligned}
$$

So need $n=19545$.
(c) By CLT,

$$
\begin{aligned}
P(|\bar{X}-9|<c) & =P\left(\frac{|\bar{X}-9|}{\sqrt{9 / n}}<\frac{c}{\sqrt{9 / n}}\right) \approx P\left(|Z|<\frac{c}{\sqrt{9 / n}}\right) \\
& =P\left(-\frac{c \sqrt{n}}{3}<Z<\frac{c \sqrt{n}}{3}\right) \\
& =P\left(Z<\frac{c \sqrt{n}}{3}\right)-\left(1-P\left(Z<\frac{c \sqrt{n}}{3}\right)\right) \\
& =2 \Phi\left(\frac{c \sqrt{n}}{3}\right)-1 .
\end{aligned}
$$

(d) Next, have $\sum_{i=1}^{5} X_{i} \sim \operatorname{Poisson}(45)$, and so

$$
\begin{aligned}
P(|\bar{X}-9|<0.3) & =P\left(\left|\sum_{i=1}^{5} X_{i}-45\right|<1.5\right) \\
& =P\left(43.5<\sum_{i=1}^{5} X_{i}<46.5\right) \\
& =\mathrm{e}^{-45}\left(\frac{45^{44}}{44!}+\frac{45^{45}}{45!}+\frac{45^{46}}{46!}\right) \\
& =\mathrm{e}^{-45} \frac{45^{44}}{44!}\left(1+1+\frac{45}{46}\right) \\
& =0.1768
\end{aligned}
$$

(e) Using approximation of part (c),

$$
\begin{aligned}
P(|\bar{X}-9|<0.3) & \approx 2 \Phi\left(\frac{0.3 \sqrt{5}}{3}\right)-1 \\
& =2 \Phi(0.22)-1=2 \times 0.5871-1=0.1742
\end{aligned}
$$

(f) Comment: the approximation is pretty good, in that the exact and approximate answers differ by only 0.0026 , in spite of the fact that n is small. This is because in approximating Poisson by normal, we need the mean of the Poisson to be reasonably large. Specifically, the approximation is certainly good for mean ≥ 10. In this case the mean is 45 , which is certainly large enough.
7. (a) For $y \geq 0$,

$$
\begin{aligned}
\operatorname{Pr}(Y \leq y) & =\operatorname{Pr}\left(Z^{2} \leq y\right) \\
& =\operatorname{Pr}(-\sqrt{y} \leq Z \leq \sqrt{y}) \\
& =2 \operatorname{Pr}(0 \leq Z \leq \sqrt{y}) \\
& =2 \int_{0}^{\sqrt{y}} \frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right) d z \\
\text { so } f_{Y}(y) & =\frac{d}{d y} \operatorname{Pr}(Y \leq y) \\
& =\frac{2}{\sqrt{2 \pi}} \exp (-y / 2) \times(1 / 2) y^{-1 / 2} \\
& =\frac{1}{\sqrt{2 \pi y}} \exp (-y / 2) \quad(y \geq 0)
\end{aligned}
$$

(b) $M_{Y}(t)=\left(\frac{1}{1-2 t}\right)^{1 / 2}$.
(c) If $Z_{1}, Z_{2}, \ldots, Z_{n}$ are independent standard normal random variables, then the distribution of $V=Z_{1}^{2}+\cdots+Z_{n}^{2}$ is called the chi-squared distribution with n degrees of freedom.
Hence

$$
M_{V}(t)=E\left[\mathrm{e}^{-t V}\right]=E\left[\mathrm{e}^{-t\left(Y_{1}+\cdots+Y_{n}\right)}\right]=\left(E\left[\mathrm{e}^{-t Y}\right]\right]^{n}
$$

where Y_{1}, \ldots, Y_{n} are independent χ_{1}^{2} random variables, so each have the moment generating function $M_{Y}(t)$ of part (b), and hence $M_{V}(t)=\left(\frac{1}{1-2 t}\right)^{n / 2}$.
From the given expression for mgf of Gamma distribution, have $\lambda_{n}=\frac{1}{2}$ and $\alpha_{n}=\frac{n}{2}$.
(d) First, mgf of W_{n} is

$$
M_{n}(t)=E\left[\mathrm{e}^{t W_{n}}\right]=E\left[\mathrm{e}^{t V_{n} / n}\right]=M_{V_{n}}\left(\frac{t}{n}\right)=\left(\frac{1}{1-\frac{2 t}{n}}\right)^{n / 2}
$$

Taking the limit,

$$
\begin{aligned}
M(t) & =\lim _{n \rightarrow \infty} M_{n}(t)=\lim _{n \rightarrow \infty}\left(1-\frac{2 t}{n}\right)^{-n / 2}=\lim _{n \rightarrow \infty}\left(\left(1-\frac{2 t}{n}\right)^{n}\right)^{-/ 12} \\
& =\left(\mathrm{e}^{-2 t}\right)^{-1 / 2}=\mathrm{e}^{t}
\end{aligned}
$$

Hence in the limit as $n \rightarrow \infty$, the random variable W_{n} converges to a random variable W with $E\left[\mathrm{e}^{t W}\right]=\mathrm{e}^{t}$, so that $W=1$ with probability 1 .

