1. (a) Three red balls and three white balls are placed in a bag. The six balls are drawn out one by one, at random and without replacement. The random variable X is the number of white balls drawn before the first red ball is drawn.
(i) Find the probabilities $P(X=x)$ for $x=0,1,2,3$.
(ii) Find $E[X]$ and $\operatorname{Var}[X]$.
(b) Suppose now that the balls are drawn out of the bag with replacement.
(i) Let Y denote the number of balls drawn up to and including the first red ball drawn. Give an expression for the probability $P(Y=y)$ for $y=1,2, \ldots$, justifying your answer. Name the distribution of Y, and write down the values of $E[Y]$ and $\operatorname{Var}[Y]$.
[6 marks]
(ii) Let V denote the number of balls drawn up to and including the second red ball drawn. Give an expression for the probability $P(V=v)$ for $v=2,3, \ldots$, justifying your answer. Name the distribution of V, and write down the values of $E[V]$ and $\operatorname{Var}[V]$.
[6 marks]
2. (a) Suppose the random variable T is exponentially distributed with parameter λ, so that T has probability density function

$$
f_{T}(t)= \begin{cases}0 & t<0 \\ \lambda \mathrm{e}^{-\lambda t} & t \geq 0\end{cases}
$$

Derive expressions for the (cumulative) distribution function $F_{T}(t)$ of T and the expectation $E[T]$.
Derive also expressions for the median and the upper and lower quartiles of the distribution of T.
(b) Suppose that T is exponentially distributed with parameter $\lambda=4$, and that Y is defined by

$$
Y=1-\mathrm{e}^{-2 T}
$$

(i) Determine the range of Y.
(ii) Find the (cumulative) distribution function of Y.
(iii) Show that the probability density function of Y is given (within the range of non-zero density) by

$$
f_{Y}(y)=2(1-y)
$$

(iv) Find $E[Y]$ and $\operatorname{Var}[Y]$, and the median of the distribution of Y. [4 marks]
3. (a) Give formulae defining the covariance and the correlation of two random variables X and Y. Explain how correlation values may be interpreted. [4 marks]
(b) Suppose X and Y are discrete random variables with the joint probability mass function given in the following table.

	$\mathrm{Y}=0$	$\mathrm{Y}=1$	$\mathrm{Y}=2$
$\mathrm{X}=2$	0.1	0.1	0.3
$\mathrm{X}=4$	0.2	0.2	0.1

(i) Find the marginal probability mass functions of X and Y, and hence find $E[X], E[Y], \operatorname{Var}[X], \operatorname{Var}[Y]$.
(ii) Find the covariance $\operatorname{Cov}[X, Y]$ and the correlation $\operatorname{Corr}[X, Y]$. [4 marks]
(iii) Comment on your computed correlation value. [2 marks]
(iv) Find $\operatorname{Var}[X+Y]$ and $\operatorname{Var}[X-Y]$.
[4 marks]
4. Suppose that random variables X, Y are jointly continuous with joint density function

$$
f_{X, Y}(x, y)=k(x(1-x)+y(1-y)), \quad 0 \leq x \leq 1,0 \leq y \leq 1
$$

for some constant k.
(a) Find the value of k, and the marginal densities $f_{X}(x)$ and $f_{Y}(y)$.
(b) Let random variables U, V be defined by

$$
U=X-Y, \quad V=X+Y
$$

Fnd the joint density $f_{U, V}(u, v)$. Sketch the region where the random vector (U, V) has positive density.
5. (a) For a discrete random variable U, the Probability Generating Function $G_{U}(s)$ of U is defined by $G_{U}(s)=E\left[s^{U}\right]$.
Show that (i) $E[U]=G_{U}^{\prime}(1)$ and (ii) $\operatorname{Var}[U]=G^{\prime \prime}(1)+G^{\prime}(1)-\left(G_{U}^{\prime}(1)\right)^{2}$, where $G_{U}^{\prime}(s)$ and $G^{\prime \prime}(s)$ denote the first and second derivatives, respectively, of $G_{U}(s)$ with respect to s.
[7 marks]
(b) Suppose V is a discrete random variable with probability mass function

$$
\operatorname{Pr}(V=k)=\frac{1}{2^{k} k \ln (2)} \quad k=1,2, \ldots
$$

Show that the Probability Generating Function $G_{V}(s)$ of V is given by

$$
G_{V}(s)=1-\frac{\ln (2-s)}{\ln (2)} \quad \text { for }-2 \leq s<2
$$

[You may use without proof the result that for $-1 \leq x<1$,

$$
\sum_{i=1}^{\infty} \frac{x^{i}}{i}=\ln \left(\frac{1}{1-x}\right)
$$

[7 marks]
(c) Using the probability generating function $G_{V}(s)$ from part (b) above, find the expectation $E[V]$ and the variance $\operatorname{Var}[V]$.
6. Suppose the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed, each with mean $\mu=9$ and variance $\sigma^{2}=9$. Denote by \bar{X} the sample mean, so that

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n} .
$$

(a) Suggest an approximation to the distribution of \bar{X} valid in the limit as $n \rightarrow \infty$, justifying your suggestion.

Hence
(b) Find (approximately) the smallest n for which $P(\bar{X}>9.05)<0.01$.
(c) Show that for $c>0$,

$$
P(|\bar{X}-9|<c) \approx 2 \Phi\left(\frac{c \sqrt{n}}{3}\right)-1
$$

where $\Phi(x)$ is the standard normal distribution function.
Suppose now that for $i=1,2, \ldots, n$ each X_{i} follows the Poisson distribution with mean 9 , and that the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent as before. With $n=5$ and $c=0.3$,
(d) compute the probability $P(|\bar{X}-9|<0.3)$ exactly;
(e) compute also an approximation to $P(|\bar{X}-9|<0.3)$ using the formula of part (c) above;
(f) comment on your results of parts (d) and (e).
7. (a) Let Z be a standard normal random variable, so that $Y=Z^{2}$ follows the chi-squared distribution with 1 degree of freedom. Show that the probability density function $f_{Y}(y)$ of Y is given by $f_{Y}(y)=\frac{1}{\sqrt{2 \pi y}} \exp (-y / 2)$ for $y \geq 0$. [Recall that the standard normal random variable Z has probability density function $f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right)$ for $-\infty<z<\infty$.]
[7 marks]
(b) Given that the chi-squared distribution with 1 degree of freedom is identical to the gamma distribution with parameters $\left(\frac{1}{2}, \frac{1}{2}\right)$, that is, $\chi_{1}^{2} \sim \Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$, write down an expression for the moment generating function $M_{Y}(t)$ of the random variable Y of part (a) above.
[You may use without proof the result that for $\lambda, \alpha>0$ the gamma distributed random variable $U \sim \Gamma(\lambda, \alpha)$ has moment generating function given by

$$
\begin{equation*}
\left.M_{U}(t)=\left(\frac{\lambda}{\lambda-t}\right)^{\alpha} \cdot\right] \tag{2marks}
\end{equation*}
$$

(c) State the definition of the chi-squared distribution with n degrees of freedom for $n \geq 1$.
Hence, denoting by V a random variable following the chi-squared distribution with n degrees of freedom, derive an expression for the moment generating function of V.
Given that the chi-squared distribution with n degrees of freedom is identical to the gamma distribution with parameters λ_{n}, α_{n} for some $\lambda_{n}, \alpha_{n}>0$, give expressions for λ_{n} and α_{n} in terms of n.
[6 marks]
(d) Suppose that for $n=1,2, \ldots$, the random variable V_{n} follows the chi-squared distribution with n degrees of freedom, and define $W_{n}=V_{n} / n$. Denote by $M_{n}(t)$ the moment generating function of W_{n}. Show that the limiting function $M(t)=\lim _{n \rightarrow \infty} M_{n}(t)$ is given by $M(t)=\mathrm{e}^{t}$. From this, what can you say about the limit of the distribution of the random variable W_{n} as $n \rightarrow \infty$?
[You may use without proof the result that for $-\infty<\mu<\infty$,

$$
\left.\lim _{n \rightarrow \infty}\left(1+\frac{\mu}{n}\right)^{n}=\mathrm{e}^{\mu} .\right]
$$

