
MATH761 January 2005 Exam Solutions

1. (a) Define

x1 = Tons of A produced per week

x2 = Tons of B produced per week

Problem is to maximise x0 = 400x1 + 300x2 (£ per week)

subject to 0.3x1 + 0.4x2 ≤ 300 (tons per week)

x1 ≥ 500 (tons per week)

x2 ≥ 200 (tons per week)

x1, x2 ≥ 0

Introduce slack variable s1, surplus variables s2, s3, artificial variables A1, A2 with

associated penalty M , then problem becomes

maximise x0 = 400x1 + 300x2 − MA1 − MA2

subject to 0.3x1 + 0.4x2 + s1 = 300

x1 − s2 + A1 = 500

x2 − s3 + A2 = 200

x1, x2, s1, s2, s3, A1, A2 ≥ 0

Eliminating A1, A2 from the objective function,

x0 = 400x1 + 300x2 − M (500 − x1 + s2 + 200 − x2 + s3)

= (400 + M)x1 + (300 + M)x2 − Ms2 − Ms3 − 700M

So initial tableau is

x1 x2 s1 s2 s3 A1 A2

x0 −(400 + M) −(300 + M) 0 M M 0 0 −700M

s1 0.3 0.4 1 0 0 0 0 300

A1 1 0 0 −1 0 1 0 500

A2 0 1 0 0 −1 0 1 200

(b) Define x1 = Number of drivers working morning shift

x2 = Number of drivers working split shift

x3 = Number of drivers working afternoon shift

Problem is to minimise x0 = x1 + x2 + x3 (drivers)

subject to x1 + x2 ≥ 50 (drivers)

x1 ≥ 30 (drivers)

x3 ≥ 30 (drivers)

x2 + x3 ≥ 45 (drivers)

x3 ≥ 20 (drivers)

x1, x2, x3 ≥ 0

Redundant constraints: x3 ≥ 20, x1 ≥ 0, x3 ≥ 0.
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2. (a) Feasible region:

Evaluating z(x, y) at vertices of feasible region, z(2, 0) = 2, z(4, 0) = 4, z(0, 3) = 12,

z(0, 2) = 8, so maximum is z = 12 at (x, y) = (0, 3).

At optimality, constraints x ≥ 0 and 3x + 4y ≤ 12 are binding; y ≥ 0, x + y ≥ 2 and

3x + 2y ≤ 12 are non-binding.

Constraint 3x + 2y ≤ 12 is redundant.

(b) First choose column with most negative objective row entry as the pivot column.

Then, for each positive entry in the pivot column, find the ratio between the entry in

the same row in the constants column and the entry in the pivot column. The row

for which this ratio is smallest is the pivot row.

The purpose of the ratio test is to ensure that when the pivot operation is carried

out, no negative entries are introduced into the constants column, since this would

mean that one of the variables took a negative value, and so would violate the non-

negativity constraints.

(c) Introducing slack variables s1, s2, s3, then tableaux are

x1 x2 x3 s1 s2 s3

x0 −3 −1 −1 0 0 0 0

s1 1 1 1 1 0 0 4

s2 2 1 0 0 1 0 2

s3 −1 1 1 0 0 1 2

x1 x2 x3 s1 s2 s3

x0 0 0.5 −1 0 1.5 0 3

s1 0 0.5 1 1 −0.5 0 3

x1 1 0.5 0 0 0.5 0 1

s3 0 1.5 1 0 0.5 1 3

or

x1 x2 x3 s1 s2 s3

x0 0 0.5 −1 0 1.5 0 3

s1 0 0.5 1 1 −0.5 0 3

x1 1 0.5 0 0 0.5 0 1

s3 0 1.5 1 0 0.5 1 3
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x1 x2 x3 s1 s2 s3

x0 0 1 0 1 1 0 6

x3 0 0.5 1 1 −0.5 0 3

x1 1 0.5 0 0 0.5 0 1

s3 0 1 0 −1 1 1 0

x1 x2 x3 s1 s2 s3

x0 0 2 0 0 2 1 6

s1 0 −1 0 1 −1 −1 0

x1 1 0.5 0 0 0.5 0 1

x3 0 1.5 1 0 0.5 1 3

So optimal solution is x0 = 6, when x1 = 1, x2 = 0, x3 = 3.

Check constraints: x1 + x2 + x3 = 1 + 0 + 3 = 4 ≤ 4

2x1 + x2 = 2 + 0 = 2 ≤ 2

−x1 + x2 + x3 = −1 + 0 + 3 = 2 ≤ 2

x1, x2, x3 ≥ 0

Basic variables are x1, x3, s3; alternative optimal basis x1, x3, s1. Or vice-versa. Or

could give either x1, x3, s2 or x1, x2, x3 as alternative basis.
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3. (a) Feasible region:

Evaluating z at vertices gives z(0, 0) = 0, z(2, 0) = 4, z(0.5, 3) = 7, z(0, 2) = 6 so

maximal value is z = 7 at (x, y) = (0.5, 3).

(i) Lines −2x + y = 2 and 2x = 4 intersect at (2, 6), constraint 2x + y ≤ c become

redundant when line 2x + y = c passes through the same point, so when c =

2 × 2 + 6 = 10.

(ii) Optimum remains at (0.5, 3) until objective line 2x + by = const is parallel to

the line 2x + y = 4, that is when b = 1, so within the range b ≥ 1 the optimum

point remains the same.

(iii) Optimal solution is affected when k increases so that the line 2x+ky = 4 crosses

into the feasible region, which happens when it coincides with the line 2x+y = 4,

so when k = 1. That is, k can increase by 1 before solution is affected.

(b) Dual simplex method appropriate when there are ≥ constraints, and usually for min-

imisation problems. Primal feasible means there are no negative values in the con-

stants column (last column) of the tableau; dual feasible means there are no negative

values in the objective row (top row) of the tableau. Primal algorithm maintains pri-

mal feasibility while working towards dual feasibility also; dual algorithm maintains

dual feasibility while working towards primal feasibility also. Once primal and dual

feasibility are simultaneously satisfied, the optimum has been reached.

(c) Introducing surplus variables s1, s2 and slack variable s3, then tableaux are

x1 x2 x3 s1 s2 s3

x0 3 1 1 0 0 0 0

s1 1 −2 −1 1 0 0 −2

s2 −2 1 -1 0 1 0 −5

s3 1 1 2 0 0 1 12
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x1 x2 x3 s1 s2 s3

x0 1 2 0 0 1 0 −5

s1 3 −3 0 1 −1 0 3

x3 2 −1 1 0 −1 0 5

s3 −3 3 0 0 2 1 2

So optimal solution is x0 = −5, when x1 = 0, x2 = 0, x3 = 5.
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4. (a) Dual is

D: minimise y0 = 7y1 + y2 + 2y3

subject to 2y1 − y2 + y3 ≥ 1

3y1 + y2 ≥ 1

y1, y2, y3 ≥ 0

Given x∗

1 = 2, x∗

2 = 1 then

2x∗

1 + 3x∗

2 = 7, first constraint satisfied with equality;

−x∗

1 + x∗

2 = −1, second constraint not satisfied with equality;

x∗

1 = 2, third constraint satisfied with equality.

Given y∗1 = 1

3
, y∗2 = 0, y∗3 = 1

3
then

2y∗1 − y∗2 + y∗3 = 1, first constraint satisfied with equality;

3y∗1 + y∗2 = 1, second constraint satisfied with equality.

Complementary slackness requires that for those constraints not satisfied with equal-

ity, the dual variable is zero. For the primal, the second constraint is the only one

not satisfied with equality, so since y∗2 = 0, complementary slackness is satisfied. For

the dual, both constraints are satisfied with equality, so complementary slackness is

satisfied.

(b) O is inferior to A, B, C, D; D is inferior to B, C.

The NIS consists of the edges AB and BC.

When w = 0, optimal point is A; when w = 1, optimal point is C.

Optimum moves from A to B when

19(1 − w) + 2w = 14(1 − w) + 16w

19 − 17w = 14 + 2w

−19w = −5

w = 5/19

Optimum moves from B to C when

14(1 − w) + 16w = 10(1 − w) + 17w

14 + 2w = 10 + 7w

−5w = −4

w = 4/5

0 ≤ w < 5/19: point A optimal

w = 5/19: edge AB optimal

5/19 < w < 4/5: point B optimal

w = 4/5: edge BC optimal

4/5 < w ≤ 1: point C optimal

The goal program is to minimise ∆ = 2d−1 + 3d−2 subject to Z1 − 2 = d+
1 − d−1 ,

Z2 − 5 = d+
2 − d−2 and d+

1 , d−1 , d+
2 , d−2 ≥ 0, together with all constraints which defined

the original feasible region OABCD.
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5. (a) A set Ω is convex if for every x, y ∈ Ω and λ ∈ [0, 1] we have λx + (1 − λ)y ∈ Ω.

A function f(x) is convex if for all x, y in the domain of f we have f(λx+(1−λ)y) ≤
λf(x) + (1 − λ)f(y) for every λ ∈ [0, 1].

A mathematical programming problem is convex if it involves the minimisation of a

convex function over a convex feasible region.

(b) Lagrangean is L(x, y;λ) = x2 + y2 + 3xy + 5x + 10y + λ (4x + y − 5), so for optimum

require

Lx = 2x + 3y + 5 + 4λ = 0

Ly = 2y + 3x + 10 + λ = 0

Lλ = 4x + y − 5 = 0

To solve for x, y, λ,

3Lx − 2Ly = 5y − 5 + 10λ = 0 ⇒ y = 1 − 2λ

then Lx = 0 ⇒ x = −(3y + 5 + 4λ)/2 = −(3 − 6λ + 5 + 4λ)/2 = −(8 − 2λ)/2 = −4 + λ

next, Lλ = 0 ⇒ 4(−4 + λ) + (1 − 2λ) − 5 = 0 ⇒ 2λ − 20 = 0 ⇒ λ = 10

hence minimum occurs at x∗ = 6, y∗ = −19.

(c)

f(x, y) = x2 + y2 − xy − x + 4

∇f = (2x − y − 1, 2y − x)

Starting from (x0, y0) = (0, 0), have (∇f)
0

= (−1, 0), so search along the line

(x, y) = (0, 0) + θ(−1, 0) = (−θ, 0)

so f(x, y) = θ2 + θ + 4

df/dθ = 2θ + 1

stationary point at θ = −0.5, so (x1, y1) = (0.5, 0).

Hence (∇f)
1

= (0,−0.5), so search along the line

(x, y) = (0.5, 0) + θ(0,−0.5) = (0.5,−0.5θ)

so f(x, y) = 0.25 + 0.25θ2 + 0.25θ − 0.5 + 4

= 0.25θ2 + 0.25θ + 3.75

df/dθ = 0.5θ + 0.25

stationary point at θ = −0.5, so (x2, y2) = (0.5, 0.25).
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6. (a) Stock level against time:

With shortages:

(b) To minimise costs, differentiate TCU with respect to y.

d

dy
TCU =

−KD

y2
+

h

2
, so at S.P.s,

KD

y2
=

h

2
⇒ y2 =

2KD

h
⇒ y∗ =

√

2KD/h

as required.

TCU (y∗) =
KD

y∗
+

hy∗

2
=

KD
√

2KD/h
+

h
√

2KD/h

2
=

√

KDh

2
+

√

KDh

2
=

√
2KDh

as required.

With K = 80, D = 360, h = 0.64, then

y∗ =
√

2 × 80 × 360/0.64 =
√

90000 = 300 items

TCU (y∗) =
√

2 × 80 × 360 × 0.64 =
√

36864 = £192

Average stock held = y∗/2 = 300/2 = 150 items

T = y∗/D = 300/360 = 0.83 weeks.

To find required range of y, set ρ = y/y∗, then

1.03 = (ρ + (1/ρ))/2

2.06ρ = ρ2 + 1

ρ2 − 2.06ρ + 1 = 0

ρ =
(

2.06 ±
√

2.062 − 4
)

/2 = 1.03 ± 0.2468

= 0, 7832, 1.2768

So required range is [0.7832y∗, 1.2768y∗] = [235, 383] items.
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(c) Differentiating TCU with respect to y and w,

d

dy
TCU = −KD

y2
+

h

2
− (h + p)w2

2y2

d

dw
TCU = −h +

(h + p)w

y

At SPs, have dTCU/dw = 0, so that w/y = h/(h+ p). Also have dTCU/dy = 0, and

substituting for w/y gives

KD

y2
=

h

2
− (h + p)h2

2(h + p)2

=
h

2
− h2

2(h + p)

=
hp

2(h + p)

y2 =
2(h + p)KD

hp

y∗ =
√

2KD(p + h)/ph
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7. (a)

U V W X ui

5 7 9 6

F 4 8 0

0 -3

4 6 9 8

G 2 3 10 -1

1

6 8 4 7

H 7 1

0 -6 -3

vj 5 7 9 9

(Compute ui, vj using ui + vj = cij for cells ij in the basis (and uF = 0), then for

non-basic cells compute δij = cij − ui − vj .)

Not optimal, as δFX and δHW are negative. Increase flow through cell with most

negative δ value, ie cell HW, by as much as possible.

U V W X ui

5 7 9 6

F 6 6 0

-6 -9

4 6 9 8

G 5 10 -7

6 7

6 8 4 7

H 5 2 -5

6 -3

vj 5 13 9 15

Need to increase flow through cell FX by as much as possible.

U V W X ui

5 7 9 6

F 6 1 5 0

3

4 6 9 8

G 10 5 2

-3 -2

6 8 4 7

H 7 -5

6 9 6

vj 5 4 9 6

Need to increase flow through cell GU by as much as possible.
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U V W X ui

5 7 9 6

F 1 1 10 0

0

4 6 9 8

G 5 10 -1

1 3

6 8 4 7

H 7 -5

6 6 6

vj 5 7 9 6

No negative δ values, so optimum has been attained.

Have δFV = 0, so there is an alternative optimal basis. Bringing FV into the basis

gives the alternative optimal solution

U V W X

5 7 9 6

F 1 1 10

4 6 9 8

G 6 9 10

6 8 4 7

H 7

(b) Initial basic feasible solution is

K L M ui

5 7 9

A 7 5 0

1

8 6 7

B 0 5 -1

4

8 8 2

C 7 -6

9 7

vj 5 7 8

No negative δ values, so solution is optimal.

If supply at A is increased to 13, then total supply is 25, total demand is 24. To

model as a balanced problem, introduce a dummy destination with demand 1, with

‘transportation costs’ to the dummy destination representing costs of over-production,

eg storage costs at the three sources.
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If demand at M then increases by 10, no need for dummy destination, total demand is

34, total supply is 25. To model as a balanced problem, need to introduce a dummy

source with supply = 9, with ‘transportation costs’ from the dummy source being

used to represent the cost of failing to meet demand.
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