MATH261/761 January 2002 Exam Solutions

1. (a) Define
1 = Tons of exterior paint produced per day

9 = Tons of interior paint produced per day

Problem is to maximise o = 3000z1 + 2000z (£ per day)

subject to
0.3z1 + 0.6z < 16 (tons per day)
0.7z1 + 0.4z9 < 12 (tons per day)
—r1+z2 < 2 (tons per day)
ze < b5 (tons per day)
z1,22 > 0

(b) Feasible region:

Evaluate zy at vertices of feasible region: z((1,0) = 1, z¢(2,0) = 2, z¢(4,1) = 6,
z0(2,3) = 8, z¢(1,2) = 5. Hence optimal solution is zy = 8 at (2, 3).

Redundant constraints are z1 + 2z2 <9, z9 < 3 and z1 > 0.

[Y3 version:

Optimal point (z1,z2) changes when objective line is parallel to 1 + 2 = 5 or
—x1 + xo = 1; that is, when a = 2 or a = —2. So the required range of a values is
2<a<2. ]

2. [Y3 version:

(a) First choose column with most negative objective row entry as the pivot column. Then,

for each positive entry in the pivot column, find the ratio between the entry in the same



row in the constants column and the entry in the pivot column. The row for which this

ratio is smallest is the pivot row.

The purpose of the ratio test is to ensure that when the pivot operation is carried out, no

negative entries are introduced into the constants column, since this would mean that one

of the variables took a negative value, and so would violate the non-negativity constraints.

}

(a) Introducing slack variables s, s9, s3, then tableaux are

X1 X9 r3 S1 S92 83
z|—-2 -3 =5 0 0 0|0
S1 1 1 -1 1 0 0|5
s2| 6 -2 -9 0 1 0|4
s3] 11 0 0 110
1 T2 T3 81 82 53
o | —0.75 —-1.7%5 0 0 0 1.25]|125
s1| 125 [125] 0 1 0 025|75
so| 825 025 0 0O 1 225]26.5
zg| 025 025 1 0 O 025] 2.5
r1T T2 I3 S1 82 S3
z| 1 0 0 14 0 1623
z2| 1 1 0 08 0 026
s2| 8 0 0 —02 1 22]|25
z3| 0 0 1 —-02 0 021

So optimal solution is ¢ = 23, when 21 =0, zo = 6, z3 = 1.

(b) Introducing surplus variable s and artificial variables A1, A, constraints become

and objective becomes

T1+To—5+ A4 =

2x1 +5x3+ Ay =

Z1,T2,T3, S,AlaAQ Z

Ty = —3T1— 22+ 3x3 —M(A1 +A2)

4
10
0

= 311 —22+3x3— M (4—21 — 22+ 5+ 10 — 221 — 5x3)
= (=3+3M)z1 + (-1 + M)zy+ (3 +5M)z3 — Ms — 14M

so that tableaux are

1 T2 3 s Ap A
20 |3—3M 1—-M —3-5M M 0 0 |—14M
A 1 1 0 -1 1 0| 4
Ay| 2 0 0 0 1| 10




T To r3 s A7 Ay
o |42—-M 1-M 0 M 0 - | 6—4M
Ay 1 1] o -1 1
T3 0.4 0 1 0 O . 2

T1 x90 T3 S A7 As
|32 0 0 1
o | 1 1 0 -1
z3 |04 0 1 O . - 12

So optimal solution is g = 2, when 1 = 0, z9 = 4, 23 = 2.

Dual is
D: minimise yy = 6y; + 4y2

subject to

v

Y1+ 2y

Y

2y1 + Yo
3y1 + 3y
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Y1,Y2

Dual feasible region:

Evaluating yo at vertices gives 30(2,0) = 12, y0(0,2) = 8, 30(2/3,2/3) = 20/3, so
minimal value is yo = 20/3 at (2/3,2/3).

Hence maximal value of z( for primal problem is zq = 20/3.

[Y3 version:

Complementary slackness conditions say that at optimal points,

T (y1+2y2-2) = 0
zo(2y1 +y2—2) = 0



z3(By1 +3y2—3) = 0
y1 (1 + 229+ 323—6) = 0
Yo (201 + 22+ 323 —4) = 0

Substituting in y; = 2/3, y2 = 2/3 the first three conditions become

:c1><0 =0
IEQXO =0
5133X1 = 0

Putting z3 = 0 into the last two conditions, then

r1+2x0 = 6
221 +x9 = 4

so that 1 = 2/3, 2 = 8/3, z3 = 0. ]

(b) Introducing surplus variables s1, s2, s3, then tableaux are

1 T2 r3 S1 S2 83
x| 4 3 3 0 0 0 O
s1|—1 —1 1 0 0]|-10
ss9|—-1 -2 =2 0 1 0| —4
s3 | —1 1 2 0 0 1| —4
Z1 To T3 S1 82 83
zo| 1 0 0 3 0 0]-30
3| 1 1 1 -1 0 0] 10
S92 1 0 0 -2 1 0] 16
s3 | —3 0 2 0 1|-24
1 X2 X3 S1 82 83
T 1 0 0 3 0 0|30
T3 0 1 1 0 —14
S92 1 0 0 -2 1 0] 16
To 3 1 0 -2 0 —-1| 24
x1 To xs3 S1 82 S3
| 0 0 05 35 0 05|-=-37
z| 1 0 —-05 —-05 0 —-0.5
s 0 0 05 —-15 1 05
0| 0 1 1.5 =05 0 0.5
So optimal solution is g = —37, when 1 =7, 2o = 3, 3 = 0.

4. [Y3 version:



(a) The weighting method is to maximise (1 —w)Z; +wZ, for 0 < w < 1. Used because it
is usually not possible to simultaneously maximise both Z; and Zs, so instead maximise
some weighted average of the two. Partial information about the relative importance of
Z1 and Z3 may then be enough to determine which values of the decision variables to use;
for instance, if we know that Z; is more important than Zs, this means that w < 1/2, and

it may happen that the optimal values of the decision variables are the same for all such

w values. ]
(i)

r vy Zl Z2
A1 0 1 3
B 1 7 15 10
C 3 5 13 14
D 4 3 10 15
E 2 0 2 6

A is inferior to B, and E is inferior to D.

The NIS consists of the edges BC and CD.
(iii) When w = 0, optimal point is B.

When w = 1, optimal point is D.

Optimum moves from B to C when
(1 —w)Z1(B) +wZy(B) = (1—w)Z1(C)+wZy(C)
151 —w) + 10w = 13(1 — w) + 14w
15—-5w = 13+w



6w

Optimum moves from C to D when

(1 —w)Z1(C) +wZy(C)
13(1 — w) + 14w

13+w

4w

w

0 <w < 1/3: point B optimal
w = 1/3: edge BC optimal

1/3 < w < 3/4: point C optimal
w = 3/4: edge CD optimal

3/4 < w < 1: point D optimal

(v) With z,y integers, set of feasible points consists of the five vertices together with

1/3

(1 —w)Z1(D) +wZs(D)
10(1 — w) + 15w
10 + 5w

3

3/4



Ty Z1 Zy
1 1 3 4
1 2 5 5
1 3 7 6
1 4 9 7
1 5 11 8
1 6 13 9
2 1 4 7
2 2 8
2 3 9
2 4 10 10
2 5 12 11
2 6 14 12
3 2 11
3 3 9 12
3 4 11 13

Points with z = 1 are all inferior to point B = (1, 7).
Points with z = 2 are all inferior to point (2,6).
Points with z = 3 are all inferior to point C = (3,5).
NIS is {(1,7),(2,6),(3,5),(4,3)}.

With K = 80, D = 100, h = 0.03, then y* = /2 x 80 x 100/0.03 = 730.3, TCU (y*) =
(80 x 100/730.3) + (0.03 x 730.3/2) ~ £21.91.

Orders in multiples of 50 units:

TCU(700) = (80 x 100/700) + (0.03 x 700/2) ~ 21.93
TCU(750) = (80 x 100/750) + (0.03 x 750/2) = 21.92

So minimal cost is achieved by an order size of 750.
If the working week is 7 days long, then would recommend an order size of 700, since
then orders are placed once each week, and the increase in costs compared to the

minimal cost solution is negligible.



(b) Stock level against time:

From the graph,

1 1
Cost per cycle = K+ §t1 (y —w)h + §t2wp

andﬂzy_w: Y =D
to 1 t1 + t2

h h(y - w)2 pr
1 —
so that Cost per cycle = K + 5D + 5D

Cost per cycle
t1 + 12

and hence TCU (y,w) =

D
= Cost per cycle x —
)

KD h(y—w)? puw?
+
Y 2y 2y
as required.

To minimise costs, differentiate TCU with respect to each of y and w.

KD hy hw?  pw?
T = = hw- | pw
CU(y,w) ” +t5 hw + % + %
d h
Lreru = b+ 2P
dw Y Y
oy =g BtPw
dw Y
v ke
(0 h+p
d ~KD h (h+p)w?
_-T - - 42T
dy cv 2 2y
d KD  (h+p)w? h
—TCU = _ b
a0y CU=0= )2 + 2 5
w_h :>KD (h+p)h*> _ h
y h+p "y 2(h+p)? 2
KD _ h_ W
2 2 2(h+p)
_ h(h+p)—h?
N 2(h + p)



hp

2(h +p)
2KD(h+p
-V = #
2KD(h+p
oy =[O
h  [2KD(h+p) 2K Dh
and hence w = =4/—
h+p hp (h+p)p

[Y3 version:

As p — oo, then minimising values of y and w converge to /2K D/h and 0, respec-
tively. That is, as shortage costs become very high, it becomes optimal never to allow
shortages to occur, and so the optimal y value is as in part (a) of the question, when
shortages weren’t permitted.

As p — 0, then minimising values of y and w both tend to infinity, with y/w — 1.
That is, if shortages cost very little, then it becomes optimal to allow very large
shortages to occur, with the maximum stock level y — w becoming very small in

comparison to w. ]

6. (a) State transition diagram for (M/M/1) queue:

The (M/M/2) queue differs in that there are two servers, operating independently.
Thus if each server operates at mean rate y, then the total service rate is 2u, except

when there’s only one customer in the system, service rate then being u.

(b) Balancing probability flows, and recalling p = A/,

Apo = pp1 P11 = ppo
(A/2)p1 = pp2 p2 = (p/2)p1 = (*/2) po
(A/3)p2 = pps ps = (p/3)p2= (p*/6) o
(A1n)pn—1 = ppn pn = (p/n)pn—1 = (p"/n!)po

Probabilities sum to 1, so normalising gives

pot+tprtpr+--- =1
p0+Pp0+(P2/2)po+(p3/6)po+--- =1



So forn=1,2,..

()

po (1+p+ (62/2) + (°/6) +-+-)

)

Pn

(i) Balancing probability flows,

poexp(p) =

Po =

n _

(5" mtypo = D)
n!
2apg = PBp1
2ap1 = 20p2
apy = 30ps3

exp(—p)

So with p = a/B = 3/4 = 0.75 then p; = 2ppq, p2 = 2p*po, 3 = (2/3)p*po. Thus
po (1+2p+2p* +(2/3)p%) = 1, and

Po
p1
p2
p3

1

1+2p+2p* +(2/3)p

2 % 0.75 X pp = 0.384
2 % 0.75% x py = 0.288
(2/3) x 0.75% x py = 0.072

= 1/3.90625 = 0.256

(ii) Average number of machines in operation = py + 2ps + 3p3 = 0.384+2 x 0.288 +
3 x0.072=1.176
[Y3 version:

(iii) Average time with all out of operation = 8 x py = 2.048 hours. ]

7. (a)
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Compute u;, v; using u; + v; = ¢;; for cells 45 in the basis (and u4 = 0), then for
p j J J

non-basic cells compute d;; = ¢;;

—u; — vj.)

Not optimal, as §43 and dp3 are negative.

If demand at A rises to 24, then total demand is 68, total supply is 64. To model as

a balanced problem, need to introduce a dummy source supplying 4 thousand items

per week, with ‘transportation costs’ from the dummy source being used to represent

the cost of failing to meet demand.

non-basic cells compute d;; = ¢;; — u; — vj.
A B C D
o] A ] [E]
U 10 5
14 18
I R CI Y
A% 4 11
-10 -9
W il 5] [w
A 12 3
-9 -13
v 6 4 -8 -3

Compute u;, vj using u; + v; = ¢;; for cells ij in the basis (and uy = 0), then for

16

13

Increase flow through cell with most negative ¢ value, ie cell WB, by as much as

possible.

A

Uj

Most negative § value now in cell VD, so increase flow there.

11

B C D U;
5] [ 8] [B
10 5 0
1 5
EI I I T
15 3
3 13 -9
K ES I ET R TS
4 8 3 0
4
6 4 5 10



A

Uj

A

Uj

K

10 5
1 14
el m (8][4
12 3
3 13
WA [E] (]
4 11
4
6 4 5 1

No negative ¢ values, so optimum has been attained.

[Y3 version:

A B C D U
T ] & =
U 10 5 0
13 18
= [ [5]  [1]
vV 4 11 16
-10 -9
1 S T R 3 R TY
W 12 3 13
-9 -13
v 6 4 -8 -3

Increase flow through cell with most negative § value, ie cell WB, by as much as

possible.

w

Uj

B

Most negative § value now in cell VD, so increase flow there.

12

C D u;
I R S N ) R
10 5 0
0
I T (I
15 3
3 13 -
[ N B FA R ETY
4 8 3 0
4
6 4 5 10



A B C D U;

K

U 10 5 0
0 14
B E R CENEY
A% 12 3 3
3 13
W (4] 1] (]
W 4 11 0
4 9
v 6 4 5 1

No negative ¢ values, so optimum has been attained.
Cost of initial solution =6 x 10 4+4x54+20x44+8 x 11 +5 x 12 4+ 10 x 3 = 338.
Cost of optimal solution =6 x 10 +4 x5 +8 x12+4x3+4 x4+ 5 x 11 = 259.

Since dyc = 0, there is an alternative optimal solution, obtained by increasing the

flow in cell UC.
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