1. By evaluating $f(0), f(1)$ and $f(2)$ we see that $f(x)$ has no roots in $\mathbf{Z} / 3 \mathbf{Z}$ and thus is irreducible.
(i) The size of \mathbf{F} is $3^{3}=27$ and the size of \mathbf{F}^{*} is 26 . The possible orders are the divisors of $\left|\mathbf{F}^{*}\right|=26$, that is, $1,2,13$ and 26 .
(ii) If 2 were a square in \mathbf{F}, its square root would be of order 4, which is not possible.
(iii) If $2 x^{2}=a^{2}$ then $2=(a / x)^{2}$, contradicting the result of (ii) above.
(iv) The elements of order 13 which are not 1 are precisely the squares in \mathbf{F} because the order of a square is a divisor of 13 and so is either 1 or 13. In this case we have $(x+2)^{2}=x^{2}+x+1$.
2. The easiest way to show N is multiplicative is to note that $N(r)=|r|^{2}=$ $r \bar{r}$ so that

$$
N(r s)=r s \overline{r s}=r \bar{r} s \bar{s}=N(r) N(s) .
$$

It is also acceptable to compute explicitly in terms of the real and imaginary parts.

The units in $\mathbf{Z}[i]$ are those elements u with $N(u)=1$ i.e. $\pm 1, \pm i$.
If $N(r)$ is a prime in \mathbf{N} and $r=s t$ then $N(r)=N(s) N(t)$ so either $N(s)$ or $N(t)$ must be 1 and hence either s or t is a unit. Hence r is irreducible.
(i) $N(3)=9$ so if there is a factorisation $3=r s$ into two irreducibles then $N(r)=N(s)=3$. However $a^{2}+b^{2}=3$ has no integer solutions so 3 is irreducible.
(ii) $N(5)=25$ so if there is a factorisation $5=r s$ into two irreducibles then $N(r)=N(s)=5$. The possibilities are $2 \pm i$ (up to associates). Trial dividing we find that $5=(2+i)(2-i)$. (Any other factorisation which is the same up to associates is acceptable.)
(iii) $N(1+4 i)=17$ so $1+4 i$ is irreducible.
(iv) $N(3+5 i)=34$ so possible irreducible factors have norms 17 or 2. Trial dividing we find

$$
3+5 i=(1-4 i)(-1+i)
$$

(or similar up to associates).
(v) $N(7-i)=50$ so possible irreducible factors have norms 2,5 , or 25 . The elements of norm 2 are $1 \pm i$, those of norm 5 are $2 \pm i$ (up to associates). Trial dividing we obtain

$$
7-i=(1+i)(2-i)^{2}
$$

From the above 3 is irreducible but $N(3)=9$ is not prime in \mathbf{Z}. (Any other prime of the form $4 k+3$ is also acceptable, provided they show it is irreducible!)

3.

a) Clearly $\sqrt{2}$ is a root of $x^{2}-2$ which is irreducible in $\mathbf{Z}[x]$ because 2 is not a perfect square. Hence, by Gauss's lemma, $x^{2}-2$ is irreducible in $\mathbf{Q}[x]$ and so is the minimal polynomial of $\sqrt{2}$.

Let $\alpha=\sqrt{2}+\sqrt{7}$. Then $\alpha^{2}=9+2 \sqrt{14}$ so

$$
\left(\alpha^{2}-9\right)^{2}=56 \quad \text { or, equivalently, } \quad \alpha^{4}-18 \alpha^{2}+25=0 .
$$

Let $f(x)=x^{4}-18 x^{2}+25$. We show this is irreducible in $\mathbf{Z}[x]$ and thence by Gauss's lemma in $\mathbf{Q}[x]$. The only possible linear factors in $\mathbf{Z}[x]$ are $x \pm 1$ and $x \pm 5$ but we easily see that none of $\pm 1, \pm 5$ are roots. Since the coefficient of x^{3} vanishes the possible factorisations into quadratics are

$$
\left(x^{2}+a x \pm 5\right)\left(x^{2}-a x \pm 5\right) \quad \text { or } \quad\left(x^{2}+a x \pm 1\right)\left(x^{2}-a x \pm 25\right) .
$$

Comparing coefficients of x^{2} we have

$$
-18=-a^{2} \pm 10 \quad \text { or } \quad-18=-a^{2} \pm 26
$$

none of which have solutions in \mathbf{Z} because none of $8,28,-8$ and 44 are perfect squares. hence $f(x)$ is irreducible and so is the minimal polynomial.
b) We have $\alpha\left(\alpha^{2}-9\right)=(\sqrt{2}+\sqrt{7}) 2 \sqrt{14}=4 \sqrt{7}+14 \sqrt{2}$. Hence

$$
\alpha\left(\alpha^{2}-9\right)-4 \alpha=10 \sqrt{2}
$$

or, equivalently,

$$
\sqrt{2}=\frac{1}{10}\left(\alpha\left(\alpha^{2}-9\right)-4 \alpha\right) \in \mathbf{Q}[\alpha] .
$$

(i) Since the minimal polynomial of $\sqrt{2}$ has degree 2 we have $[\mathbf{Q}[\sqrt{2}]: \mathbf{Q}]=2$.
(ii) Since the minimal polynomial of $\alpha=\sqrt{2}+\sqrt{7}$ has degree 4 we have $[\mathbf{Q}[\alpha]$: $\mathbf{Q}]=4$.
(iii) By the above $[\mathbf{Q}[\alpha]: \mathbf{Q}[\sqrt{2}]]=[\mathbf{Q}[\alpha]: \mathbf{Q}] /[\mathbf{Q}[\sqrt{2}]: \mathbf{Q}]=2$.

If $\sqrt{7} \in Q[\sqrt{2}]$ then $\alpha \in \mathbf{Q}[\sqrt{2}]$ and $[\mathbf{Q}[\alpha]: \mathbf{Q}[\sqrt{2}]]=1$. Since this is not the case $\sqrt{7} \notin Q[\sqrt{2}]$.
4. If $\operatorname{deg} g(x)<\operatorname{deg} f(x)$ then $g(x)$ has no common factors with the irreducible polynomial $f(x)$. Hence $\operatorname{gcd}(f(x), g(x))=1$. We can find the gcd by using the Euclidean algorithm and then (Bézout's theorem) we can find $a(x), b(x) \in \mathbf{Q}[x]$ with

$$
a(x) f(x)+b(x) g(x)=1 .
$$

Reducing modulo $\langle f(x)\rangle$ the above equation becomes

$$
b(x) g(x)=1
$$

in $\mathbf{Q}[x] /\langle f(x)\rangle$ so that the class of $b(x)$ is a multiplicative inverse for that of $g(x)$.

To find the multiplicative inverses we carry out the Euclidean algorithm:

$$
\begin{equation*}
x^{3}+x+1=\left(x^{2}-x+2\right)(x+1)-1 \tag{i}
\end{equation*}
$$

Thus

$$
\begin{aligned}
\operatorname{gcd}(f(x), g(x)) & =-1 \\
& =f(x)-\left(x^{2}-x+2\right) g(x)
\end{aligned}
$$

So $a(x)=-1$ and the required multiplicative inverse is

$$
b(x)=x^{2}-x+2 .
$$

(ii)

$$
\begin{aligned}
x^{3}+4 x+2 & =(x+4)\left(x^{2}+1\right)+(-x-2) \\
x^{2}+1 & =(-x+2)(-x-2)+5
\end{aligned}
$$

So

$$
\begin{aligned}
\operatorname{gcd}(f(x), g(x)) & =5 \\
& =g(x)+(x-2)(f(x)-(x+4) g(x)) \\
& =(x-2) f(x)-\left(x^{2}+2 x-9\right) g(x)
\end{aligned}
$$

So $a(x)=\frac{1}{5}(x-2)$ and the required multiplicative inverse is

$$
b(x)=\frac{1}{5}\left(-x^{2}+2 x-9\right) .
$$

5. There are $5^{2}=25$ points in $(\mathbf{Z} / 5 \mathbf{Z})^{2}$ and 5 points on any line.
(i) There are $25 \times 24 / 2=300$ distinct pairs of points in $(\mathbf{Z} / 5 \mathbf{Z})^{2}$ and $5 \times 4 / 2=$ 10 pairs of points on each line. Since there is a unique line through any pair of distinct points the number of lines in $(\mathbf{Z} / 5 \mathbf{Z})^{2}$ is $300 / 10=30$.
The number of lines through a point x is given by the number of other points divided by the number of other points on any line through x i.e. there are $24 / 4=6$ lines through a given point.
(ii) Both sets of parameters can be obtained by taking as blocks the subsets of $(\mathbf{Z} / 5 \mathbf{Z})^{2}$ given by points on each line (there are 5 points on each line so each block has size 5 as required). Each point lies on 6 lines and each pair of points lies on 1 line. This gives the required 1-design and 2-design, respectively.
(iii) The first set of parameters can be obtained by taking as blocks the subsets of lines through each point (there are 6 lines through each point so each block has size 6). Each line passes through 5 points giving a 1-(30, 6, 5)design.
The second set of parameters can be obtained by taking as blocks the subsets of parallel lines. There are 5 lines in each block and each line lies in exactly one block giving a 1-($30,5,1$)-design.
6. a) Label the seven varieties by the points in the projective plane $\mathbf{P}^{2}(\mathbf{Z} / 2 \mathbf{Z})$ and the seven locations by the lines in $\mathbf{P}^{2}(\mathbf{Z} / 2 \mathbf{Z})$. The three varieties grown in a location are those corresponding to the three points on the line corresponding to the location.

Since any two points lie on a line, any two varieties are planted together in one location.

The incidence matrix of the schedule is therefore the same as that of points and lines in $\mathbf{P}^{2}(\mathbf{Z} / 2 \mathbf{Z})$:

	$[1: 0: 0]$	$[0: 1: 0]$	$[0: 0: 1]$	$[1: 1: 0]$	$[1: 0: 1]$	$[0: 1: 1]$	$[1: 1: 1]$
$x=0$	0	1	1	0	0	1	0
$y=0$	1	0	1	0	1	0	0
$z=0$	1	1	0	1	0	0	0
$x+y=0$	0	0	1	1	0	0	1
$x+z=0$	0	1	0	0	1	0	1
$y+z=0$	1	0	0	0	0	1	1
$x+y+z=0$	0	0	0	1	1	1	0

b) A 2- (v, k, r)-design consists of an underlying set X and a set \mathbf{B} of subsets of X (the blocks of the design) each of which has size k and with the property that each pair of elements of X occurs in precisely r of the blocks of the design.

The numerical constraints for a 2 -design are

$$
(k-1) \mid(v-1) r \quad \text { and } \quad k(k-1) \mid v(v-1) r
$$

When $k=3$ and $r=1$ these yield

$$
2 \mid(v-1) \quad \text { and } \quad 6 \mid v(v-1) .
$$

Hence $v=2 \ell+1$ where $(2 \ell+1) 2 \ell=6 m$. So $\ell=3 n$ or $\ell=3 n+1$. The first case yields $v=6 n+1$ and the second $v=6 n+3$.
7. a) The irreducible degree 2 polynomial in $(\mathbf{Z} / 2 \mathbf{Z})[x]$ is $x^{2}+x+1$ (it is easy to check it has no roots). The three irreducible degree 4 polynomials in $(\mathbf{Z} / 2 \mathbf{Z})[x]$ are

$$
x^{4}+x^{3}+x^{2}+x+1, \quad x^{4}+x+1 \quad \text { and } \quad x^{4}+x^{3}+1 .
$$

Again, it is easy to check they have no roots. Since there is only one irreducible degree 2 polynomial and none of these is its square (which is $x^{4}+x^{2}+1$) they must be irreducible.

The theory of factorisations of $x^{p^{n}}-x$ in $(\mathbf{Z} / p \mathbf{Z})[x]$ tells us that the factors of $x^{16}+x$ in $(\mathbf{Z} / 2 \mathbf{Z})[x]$ are the irreducible polynomials in $(\mathbf{Z} / 2 \mathbf{Z})[x]$ of degrees dividing 16, and that each occurs once in the factorisation. Hence

$$
x^{15}+1=(x+1)\left(x^{2}+x+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)
$$

b) If $g(x)=(x+1)\left(x^{4}+x+1\right)$ then $g(x) h(x)=x^{15}+1$ where

$$
\begin{aligned}
h(x) & =\left(x^{2}+x+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)\left(x^{4}+x^{3}+1\right) \\
& =x^{10}+x^{9}+x^{8}+x^{6}+x^{5}+x^{2}+1 .
\end{aligned}
$$

The first row of the check matrix is the coefficients of $h(x)$ in descending order starting with that of the highest power x^{10} and followed by 4 zeros (to make 15 entries). The next row is the cyclic shift of this right by one place and so on. So the matrix is

$$
\left(\begin{array}{lllllllllllllll}
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

There are no zero columns and no two columns are the same so the code has weight ≥ 3.
c) Each cyclic code of length 15 is generated by a factor of $x^{15}+1$. The dimension of the code is 15 less the degree of the factor. Simple combinatorics yields: there is one cyclic code of each dimension in $\{0,1,2,3,12,13,14,15\}$ and three of each dimension in $\{4,5,6,7,8,9,10,11\}$.
8. a) The minimum distance of a code C in $(\mathbf{Z} / 2 \mathbf{Z})^{n}$ is

$$
\min \left\{d\left(x, x^{\prime}\right): x \neq x^{\prime} \in C\right\}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ and the distance

$$
d\left(x, x^{\prime}\right)=\left|\left\{i: x_{i} \neq x_{i}^{\prime}\right\}\right| .
$$

The weight of a word $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is $w(x)=\left|\left\{x_{i} \neq 0\right\}\right|$, and the weight of the code C is

$$
\min \{w(x): x \in C\}
$$

It follows that $d\left(x, x^{\prime}\right)=w\left(x-x^{\prime}\right)=w\left(x+x^{\prime}\right)$ and so the minimum distance and the weight are the same.
b)
(i) Suppose x is a word of weight 1 and that x_{i} is the non-zero entry. Then $M x^{T}$ is the i th column of M. If this column is not identically zero then $x \notin C$.
(ii) Suppose x is a word of weight 2 and that x_{i} and x_{j} are the non-zero entries. Then $M x^{T}$ is the sum, equivalently the difference, of the i th and j th columns of M. If these columns are not the same then $x \notin C$.
(iii) Suppose x is a word of weight 3 and that x_{i}, x_{j} and x_{k} are the non-zero entries. Then $M x^{T}$ is the sum of the i th, j th and k th columns of M. If the sum of these columns is not zero then $x \notin C$.
(iv) Clearly M has no identically zero columns and no two columns are the same. Each column has either 1 or 3 non-zero entries. The sum of any two of the first, or last, four columns has two non-zero entries. Hence adding any other column gives a non-zero result. Thus C has weight ≥ 4.
An example of a word in the code with weight 4 is 11101000 . Thus C has weight exactly 4.
The code C detects $4-1=3$ errors and corrects $\lfloor(4-1) / 2\rfloor=1$ error.

