
1. By evaluating f(0), f(1) and f(2) we see that f(x) has no roots in Z/3Z
and thus is irreducible.

(i) The size of F is 33 = 27 and the size of F∗ is 26. The possible orders are
the divisors of |F∗| = 26, that is, 1, 2, 13 and 26.

(ii) If 2 were a square in F, its square root would be of order 4, which is not
possible.

(iii) If 2x2 = a2 then 2 = (a/x)2, contradicting the result of (ii) above.

(iv) The elements of order 13 which are not 1 are precisely the squares in F
because the order of a square is a divisor of 13 and so is either 1 or 13. In
this case we have (x + 2)2 = x2 + x + 1.
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2. The easiest way to show N is multiplicative is to note that N(r) = |r|2 =
rr so that

N(rs) = rsrs = rrss = N(r)N(s).

It is also acceptable to compute explicitly in terms of the real and imaginary
parts.

The units in Z[i] are those elements u with N(u) = 1 i.e. ±1,±i.

If N(r) is a prime in N and r = st then N(r) = N(s)N(t) so either N(s) or
N(t) must be 1 and hence either s or t is a unit. Hence r is irreducible.

(i) N(3) = 9 so if there is a factorisation 3 = rs into two irreducibles then
N(r) = N(s) = 3. However a2 + b2 = 3 has no integer solutions so 3 is
irreducible.

(ii) N(5) = 25 so if there is a factorisation 5 = rs into two irreducibles then
N(r) = N(s) = 5. The possibilities are 2 ± i (up to associates). Trial
dividing we find that 5 = (2 + i)(2 − i). (Any other factorisation which is
the same up to associates is acceptable.)

(iii) N(1 + 4i) = 17 so 1 + 4i is irreducible.

(iv) N(3 + 5i) = 34 so possible irreducible factors have norms 17 or 2. Trial
dividing we find

3 + 5i = (1− 4i)(−1 + i)

(or similar up to associates).

(v) N(7 − i) = 50 so possible irreducible factors have norms 2, 5, or 25. The
elements of norm 2 are 1 ± i, those of norm 5 are 2 ± i (up to associates).
Trial dividing we obtain

7− i = (1 + i)(2− i)2.

From the above 3 is irreducible but N(3) = 9 is not prime in Z. (Any other
prime of the form 4k+3 is also acceptable, provided they show it is irreducible!)

Paper Code MATH 747 Page 3 of 9 CONTINUED



3.

a) Clearly
√

2 is a root of x2 − 2 which is irreducible in Z[x] because 2 is
not a perfect square. Hence, by Gauss’s lemma, x2 − 2 is irreducible in Q[x] and
so is the minimal polynomial of

√
2.

Let α =
√

2 +
√

7. Then α2 = 9 + 2
√

14 so

(α2 − 9)2 = 56 or, equivalently, α4 − 18α2 + 25 = 0.

Let f(x) = x4 − 18x2 + 25. We show this is irreducible in Z[x] and thence by
Gauss’s lemma in Q[x]. The only possible linear factors in Z[x] are x ± 1 and
x± 5 but we easily see that none of ±1,±5 are roots. Since the coefficient of x3

vanishes the possible factorisations into quadratics are

(x2 + ax± 5)(x2 − ax± 5) or (x2 + ax± 1)(x2 − ax± 25).

Comparing coefficients of x2 we have

−18 = −a2 ± 10 or − 18 = −a2 ± 26

none of which have solutions in Z because none of 8, 28,−8 and 44 are perfect
squares. hence f(x) is irreducible and so is the minimal polynomial.

b) We have α(α2 − 9) = (
√

2 +
√

7)2
√

14 = 4
√

7 + 14
√

2. Hence

α(α2 − 9)− 4α = 10
√

2

or, equivalently,
√

2 =
1

10

(
α(α2 − 9)− 4α

)
∈ Q[α].

(i) Since the minimal polynomial of
√

2 has degree 2 we have [Q[
√

2] : Q] = 2.

(ii) Since the minimal polynomial of α =
√

2+
√

7 has degree 4 we have [Q[α] :
Q] = 4.

(iii) By the above [Q[α] : Q[
√

2]] = [Q[α] : Q]/[Q[
√

2] : Q] = 2.

If
√

7 ∈ Q[
√

2] then α ∈ Q[
√

2] and [Q[α] : Q[
√

2]] = 1. Since this is not the
case

√
7 6∈ Q[

√
2].
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4. If deg g(x) < deg f(x) then g(x) has no common factors with the irre-
ducible polynomial f(x). Hence gcd(f(x), g(x)) = 1. We can find the gcd
by using the Euclidean algorithm and then (Bézout’s theorem) we can find
a(x), b(x) ∈ Q[x] with

a(x)f(x) + b(x)g(x) = 1.

Reducing modulo 〈f(x)〉 the above equation becomes

b(x)g(x) = 1

in Q[x]/〈f(x)〉 so that the class of b(x) is a multiplicative inverse for that of
g(x).

To find the multiplicative inverses we carry out the Euclidean algorithm:

(i)
x3 + x + 1 = (x2 − x + 2)(x + 1)− 1

Thus

gcd(f(x), g(x)) = −1

= f(x)− (x2 − x + 2)g(x).

So a(x) = −1 and the required multiplicative inverse is

b(x) = x2 − x + 2.

(ii)

x3 + 4x + 2 = (x + 4)(x2 + 1) + (−x− 2)

x2 + 1 = (−x + 2)(−x− 2) + 5

So

gcd(f(x), g(x)) = 5

= g(x) + (x− 2) (f(x)− (x + 4)g(x))

= (x− 2)f(x)− (x2 + 2x− 9)g(x)

So a(x) = 1
5
(x− 2) and the required multiplicative inverse is

b(x) =
1

5
(−x2 + 2x− 9).
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5. There are 52 = 25 points in (Z/5Z)2 and 5 points on any line.

(i) There are 25×24/2 = 300 distinct pairs of points in (Z/5Z)2 and 5×4/2 =
10 pairs of points on each line. Since there is a unique line through any
pair of distinct points the number of lines in (Z/5Z)2 is 300/10 = 30.

The number of lines through a point x is given by the number of other
points divided by the number of other points on any line through x i.e.
there are 24/4 = 6 lines through a given point.

(ii) Both sets of parameters can be obtained by taking as blocks the subsets
of (Z/5Z)2 given by points on each line (there are 5 points on each line
so each block has size 5 as required). Each point lies on 6 lines and each
pair of points lies on 1 line. This gives the required 1-design and 2-design,
respectively.

(iii) The first set of parameters can be obtained by taking as blocks the subsets
of lines through each point (there are 6 lines through each point so each
block has size 6). Each line passes through 5 points giving a 1-(30, 6, 5)-
design.

The second set of parameters can be obtained by taking as blocks the
subsets of parallel lines. There are 5 lines in each block and each line lies
in exactly one block giving a 1-(30, 5, 1)-design.
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6. a) Label the seven varieties by the points in the projective plane P2(Z/2Z)
and the seven locations by the lines in P2(Z/2Z). The three varieties grown in
a location are those corresponding to the three points on the line corresponding
to the location.

Since any two points lie on a line, any two varieties are planted together in
one location.

The incidence matrix of the schedule is therefore the same as that of points
and lines in P2(Z/2Z):

[1 : 0 : 0] [0 : 1 : 0] [0 : 0 : 1] [1 : 1 : 0] [1 : 0 : 1] [0 : 1 : 1] [1 : 1 : 1]
x = 0 0 1 1 0 0 1 0
y = 0 1 0 1 0 1 0 0
z = 0 1 1 0 1 0 0 0
x + y = 0 0 0 1 1 0 0 1
x + z = 0 0 1 0 0 1 0 1
y + z = 0 1 0 0 0 0 1 1
x + y + z = 0 0 0 0 1 1 1 0

b) A 2-(v, k, r)-design consists of an underlying set X and a set B of
subsets of X (the blocks of the design) each of which has size k and with the
property that each pair of elements of X occurs in precisely r of the blocks of the
design.

The numerical constraints for a 2-design are

(k − 1) | (v − 1)r and k(k − 1) | v(v − 1)r

When k = 3 and r = 1 these yield

2 | (v − 1) and 6 | v(v − 1).

Hence v = 2` + 1 where (2` + 1)2` = 6m. So ` = 3n or ` = 3n + 1. The first case
yields v = 6n + 1 and the second v = 6n + 3.
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7. a) The irreducible degree 2 polynomial in (Z/2Z)[x] is x2 + x + 1 (it is
easy to check it has no roots). The three irreducible degree 4 polynomials in
(Z/2Z)[x] are

x4 + x3 + x2 + x + 1, x4 + x + 1 and x4 + x3 + 1.

Again, it is easy to check they have no roots. Since there is only one irreducible
degree 2 polynomial and none of these is its square (which is x4 + x2 + 1) they
must be irreducible.

The theory of factorisations of xpn − x in (Z/pZ)[x] tells us that the factors
of x16 + x in (Z/2Z)[x] are the irreducible polynomials in (Z/2Z)[x] of degrees
dividing 16, and that each occurs once in the factorisation. Hence

x15 + 1 = (x + 1)(x2 + x + 1)(x4 + x3 + x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1).

b) If g(x) = (x + 1)(x4 + x + 1) then g(x)h(x) = x15 + 1 where

h(x) = (x2 + x + 1)(x4 + x3 + x2 + x + 1)(x4 + x3 + 1)

= x10 + x9 + x8 + x6 + x5 + x2 + 1.

The first row of the check matrix is the coefficients of h(x) in descending order
starting with that of the highest power x10 and followed by 4 zeros (to make 15
entries). The next row is the cyclic shift of this right by one place and so on. So
the matrix is 

1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 1 0 1 1 0 0 1 0 1



There are no zero columns and no two columns are the same so the code has
weight ≥ 3.

c) Each cyclic code of length 15 is generated by a factor of x15 + 1. The
dimension of the code is 15 less the degree of the factor. Simple combinatorics
yields: there is one cyclic code of each dimension in {0, 1, 2, 3, 12, 13, 14, 15} and
three of each dimension in {4, 5, 6, 7, 8, 9, 10, 11}.
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8. a) The minimum distance of a code C in (Z/2Z)n is

min{d(x, x′) : x 6= x′ ∈ C}

where x = (x1, x2, . . . , xn), x′ = (x′
1, x

′
2, . . . , x

′
n) and the distance

d(x, x′) = |{i : xi 6= x′
i}|.

The weight of a word x = (x1, x2, . . . , xn) is w(x) = |{xi 6= 0}|, and the weight
of the code C is

min{w(x) : x ∈ C}.

It follows that d(x, x′) = w(x− x′) = w(x + x′) and so the minimum distance
and the weight are the same.

b)

(i) Suppose x is a word of weight 1 and that xi is the non-zero entry. Then
MxT is the ith column of M . If this column is not identically zero then
x 6∈ C.

(ii) Suppose x is a word of weight 2 and that xi and xj are the non-zero en-
tries. Then MxT is the sum, equivalently the difference, of the ith and jth
columns of M . If these columns are not the same then x 6∈ C.

(iii) Suppose x is a word of weight 3 and that xi, xj and xk are the non-zero
entries. Then MxT is the sum of the ith, jth and kth columns of M . If the
sum of these columns is not zero then x 6∈ C.

(iv) Clearly M has no identically zero columns and no two columns are the
same. Each column has either 1 or 3 non-zero entries. The sum of any two
of the first, or last, four columns has two non-zero entries. Hence adding
any other column gives a non-zero result. Thus C has weight ≥ 4.

An example of a word in the code with weight 4 is 11101000. Thus C has
weight exactly 4.

The code C detects 4− 1 = 3 errors and corrects b(4− 1)/2c = 1 error.
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