THE UNIVERSITY
of LIVERPOOL
1.
(a) Let f be the bilinear form on \mathbb{R}^{2} defined by

$$
f\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=-2 x_{1} x_{2}+x_{1} y_{2}-y_{1} x_{2}+y_{1} y_{2}
$$

Let $u_{1}=(1,3), u_{2}=(-1,2)$. Compute $f\left(u_{1}, u_{1}\right), f\left(u_{1}, u_{2}\right), f\left(u_{2}, u_{1}\right), f\left(u_{2}, u_{2}\right)$. Find the matrix A of f relative to the basis $\left\{u_{1}, u_{2}\right\}$.
(b) Also find the matrix B of f relative to the basis $\left\{v_{1}, v_{2}\right\}$, where $v_{1}=$ $(-2,-1), v_{2}=(3,4)$.
(c) Find the change of basis matrix P from $\left\{u_{1}, u_{2}\right\}$ to $\left\{v_{1}, v_{2}\right\}$ and check that $B=P^{T} A P$.
(d) Now consider the quadratic form

$$
q(x, y, z)=-2 x^{2}+4 x y+2 y^{2}-2 x z+2 z^{2}
$$

Give the matrix C representing q with respect to the standard basis.
(e) Find a diagonal matrix D equivalent to C and the matrix Q which describes the change of basis from the standard basis to the basis in which q is diagonal.
(f) What are the rank and signature of q ? What type of quadric surface is described by the equation $q(x, y, z)=3$?

THE UNIVERSITY
of LIVERPOOL
2.
(a) Let V be a vector space. Say what it means for vectors v_{1}, \ldots, v_{k} to form a basis of V.
(b) Let U be the subspace of \mathbb{R}^{3} spanned by

$$
u_{1}=(1,1,-1), \quad u_{2}=(2,1,1), \quad u_{3}=(1,-1,5) .
$$

Find the dimension of U.
(c) Let W be the subspace of \mathbb{R}^{3} spanned by

$$
w_{1}=(1,2,-4), \quad w_{2}=(3,1,3), \quad w_{3}=(2,-1,7) .
$$

Show that $U=W$.
(d) Now let $V=\operatorname{Pol}_{3}(\mathbb{R})$ be the vector space of polynomials in x, of degree at most three, with real coefficients. Let

$$
U=\left\{a x^{3}+b x^{2}+c x+d: d+a=b+2 c\right\} .
$$

Show that U is a subspace of V.
(e) Similarly,

$$
W=\left\{(2 a+2 b) x^{3}+2 a x^{2}+(3 a-b) x-2 b: a, b \in \mathbb{R}\right\}
$$

is a subspace of V [you do not need to show this]. What are the dimensions of each of $U, W, U \cap W$ and $U+W$? Is it true or false that $U+W=U \oplus W$?

THE UNIVERSITY of LIVERPOOL

3.

(a) Let V and W be finite-dimensional vector spaces, and let $\varphi: V \rightarrow W$ be linear. Define the rank and nullity of φ. State the rank and nullity theorem.
(b) Let $V=\operatorname{Pol}_{3}(\mathbb{R})$ (the vector space of polynomials in x, of degree at most three, with real coefficients), and let $W=\mathbb{R}^{3}$. Define $\varphi: V \rightarrow W$ by

$$
\varphi\left(a x^{3}+b x^{2}+c x+d\right)=(a+b+d, 2 a+b+c-d, 3 a+2 b+c) .
$$

Show that φ is a linear map and compute its rank and nullity. Is φ an isomorphism?
(c) Now let $V=\operatorname{Pol}_{2}(\mathbb{R})$ be the vector space of polynomials in x, of degree at most two, with real coefficients. Let the linear map $\varphi: V \rightarrow V$ be defined by

$$
\varphi\left(a x^{2}+b x+c\right)=(4 c-a-2 b) x^{2}+(2 a+4 b-8 c) x+b-3 c .
$$

[You need not show that φ is linear.] Find M, the matrix representation of φ with respect to the basis $\left\{x^{2}, x, 1\right\}$.
(d) What are the eigenvalues and eigenvectors of M ?
(e) Is M diagonalizable? If yes, find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} M P$.

THE UNIVERSITY of LIVERPOOL

4.

(a) Define the terms: group, homomorphism, injective, surjective.
(b) Let G be a group. Which of the following statements are true, and which are false? Give counterexamples to any false statements. You do not need to prove the true statements.
(i) Let $a, b \in G$. Then $b^{-1} a b=a$.
(ii) Let $a, b \in G$, and suppose that $a b=e$ (where e is the identity element of G). Then $b=a^{-1}$.
(iii) If $a, b, c \in G$, then $(a b) c=a(b c)$.
(iv) If $a \in G$ with $a^{3}=e$, then $a=e$.
(c) Let G be the group of real numbers under addition, and let H be the group of invertible 2×2 matrices with real entries, under matrix multiplication. [You need not show that these are groups]. Let $\varphi: G \rightarrow H$ be defined by

$$
\varphi(t)=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) .
$$

Show that φ is a homomorphism. State, giving reasons, whether φ is injective. State, giving reasons, whether φ is surjective.
(d) The following is a partially completed group table. Fill in the missing entries. You must justify why each choice of entry is the only one possible.

$*$	A	B	C	D	E	F
A	$?$	C	$?$	$?$	$?$	$?$
B	$?$	$?$	B	$?$	$?$	$?$
C	$?$	$?$	$?$	$?$	$?$	$?$
D	F	$?$	$?$	$?$	$?$	A
E	$?$	$?$	$?$	A	C	B
F	$?$	D	$?$	$?$	$?$	$?$

(e) Name a known group with the same group table.

THE UNIVERSITY of LIVERPOOL

5.

(a) Say what it means for a function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be an isometry of the plane.
(b) Show that the set of isometries of the plane forms a group under composition. (You may use the fact that the composition of functions is associative.)
(c) Let ϱ be the anticlockwise rotation around 0 by 60 degrees, and let σ be reflection in the y-axis. Write the isometry $\varphi=\varrho \circ \sigma$ as a single rotation, reflection or translation.

Is φ a linear map from \mathbb{R}^{2} to itself? If yes, also give the matrix representation of φ with respect to the standard basis of \mathbb{R}^{2}.
(d) From lectures, you know that every isometry φ of the plane can be written as a composition $\varphi=\tau \circ \alpha$, where α is either a reflection in a line through the origin, or a rotation around the origin, and τ is a translation.
Let φ be the anticlockwise rotation around the point $(1,0)$ by ninety degrees. Find τ and α as above such that $\varphi=\tau \circ \alpha$.

THE UNIVERSITY of LIVERPOOL

6. Let the linear map $\varphi: \mathbb{R}^{4} \rightarrow \operatorname{Pol}_{3}(\mathbb{R})$ be given by

$$
\varphi(a, b, c, d)=(a+b-c) x^{3}+(a+b+d) x^{2}+(b+c+3 d) x+a+2 b+3 d .
$$

[You need not show that φ is linear. Recall that $\operatorname{Pol}_{3}(\mathbb{R})$ is the vector space of polynomials in x, of degree at most three, with real coefficients.]
(a) Find a basis for U, the image of φ, and a basis for W, the kernel of φ. What are the rank and the nullity of φ ?
(b) Consider the basis $B=\left(x^{3}+x^{2}+1, x^{3}+x^{2}+x+2, x-x^{3}, 1\right)$ of $\operatorname{Pol}_{3}(\mathbb{R})$. [You need not show that this is a basis.] Find the change-of-basis matrix P from the standard basis $\left(x^{3}, x^{2}, x, 1\right)$ to B. Compute the inverse matrix P^{-1}.
(c) Compute the matrix representation M of the linear map φ with respect to the standard basis of \mathbb{R}^{4} and the basis B of $\operatorname{Pol}_{3}(\mathbb{R})$.
(d) Find a basis C of \mathbb{R}^{4} such that the matrix M^{\prime} of φ with respect to C and B is

$$
M^{\prime}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

[20 marks]

