THE UNIVERSITY
of LIVERPOOL

## SOLUTIONS FOR MATH744 (MAY 2006)

## Section A

1. 

(a) $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent if the only solution to $\lambda_{1} v_{1}+\ldots \lambda_{k} v_{k}=0$ is given by $\lambda_{1}=\cdots=\lambda_{k}=0$. (Alternatively: none of $v_{1}, \ldots, v_{k}$ can be written as a linear combination of the other vectors.)
[1 mark]. Standard definition from lectures.
(b) First method: First put $u_{1}, u_{2}, u_{3}$ as the rows of a matrix, and use row operations to reduce to echelon form. Solution:

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 2 & -1 \\
3 & 0 & 1
\end{array}\right) \longrightarrow \ldots \longrightarrow\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

Thus $(3,0,1),(0,3,-2)$ is a basis of $U$, and the dimension is 2 .
Second method: Find a nontrivial solution to the equation $\lambda u_{1}+\mu u_{2}+\nu u_{3}=0$; e.g. $2(1,-1,1)+(1,2,-1)-(3,0,1)=(0,0,0)$. So the three vectors are linearly dependent, so $\operatorname{dim} U<3$. On the other hand, there are clearly two linearly independent vectors among the three vectors given (any pair will do), so $\operatorname{dim} U \geq 2$.

Remark: An easy way to check whether a given basis for $U$ is correct is to note that $U=\{(x, y, z): x-2 y=3 z\}$.
[3 marks]. Standard exercise.
(c) First method: Again, put $w_{1}, w_{2}, w_{3}$ as the rows of a matrix, and use row operations to reduce to echelon form:

$$
\left(\begin{array}{ccc}
-4 & 1 & -2 \\
2 & 1 & 0 \\
5 & 1 & 1
\end{array}\right) \longrightarrow \ldots \longrightarrow\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore the space $W$ also has the basis $\{(3,0,1),(0,3,-2)\}$, and so $U=W$.
Second method: Since we have already computed the dimension of $U$ as 2, and the dimension of $W$ is clearly at least 2 , it is enough to check that $W \subset U$; i.e., each of the vectors $w_{j}$ belongs to $U$. This can be done, for example, by writing them as linear combinations of $u_{1}$ and $u_{2}$ (again solving a system of linear equations):

$$
w_{1}=-3 u_{1}-u_{2}, \quad w_{2}=u_{1}+u_{2}, \quad w_{3}=3 u_{1}+2 u_{2} .
$$

[3 marks]. Standard exercise.
(d) Now $V=\operatorname{Pol}_{3}(\mathbb{R})$ is the vector space of polynomials with real coefficients of degree at most three, and

$$
\begin{aligned}
U & :=\left\{(2 a+b) x^{3}+a x^{2}-(2 a+b) x-b: a, b \in \mathbb{R}\right\} \quad \text { and } \\
W & :=\left\{(b-a) x^{3}+c x^{2}+(a-b) x-c: a, b, c \in \mathbb{R}\right\} .
\end{aligned}
$$

Let $v_{1}=\left(2 a_{1}+b_{1}\right) x^{3}+a_{1} x^{2}-\left(2 a_{1}+b_{1}\right) x-b_{1}$ and $v_{2}=\left(2 a_{2}+b_{2}\right) x^{3}+a_{2} x^{2}-\left(2 a_{2}+\right.$ $\left.\left.b_{2}\right) x-b\right) 2$ be arbitrary elements of $U$, and let $\mu, \lambda \in \mathbb{R}$. Setting $a:=\lambda a_{1}+\mu a_{2}$ and $b:=\lambda b_{1}+\mu b_{2}$, a simple calculation shows

$$
\lambda v_{1}+\lambda v_{2}=(2 a+b) x^{3}+a x^{2}-(2 a+b) x-b \in U
$$

So $U$ is a subspace of $V$.
[3 marks]. Seen similar in exercises
(e) By definition of $U,\left(2 x^{3}+x^{2}-2 x, x^{3}-x-1\right)$ is a spanning set of $U$. Since the two vectors are clearly linearly independent, it is also a basis. Thus the dimension of $U$ is two. Similarly, $\left(x^{3}-x, x^{2}-1\right)$ is a basis for $W$, and the dimension of $W$ is also two.
(We mention here that $U=\left\{a x^{3}+b x^{2}+c x+d: a+c=0\right.$ and $\left.a=2 b-d\right\}$ and $W=\left\{a x^{3}+b x^{2}+c x+d: a+c=0\right.$ and $\left.b+d=0\right\}$; for either space, any two linearly independent vectors would provide an acceptable answer.)
[4 marks]. Seen similar in exercises
To find $U \cap W$, we need to decide when an arbitrary vector $v$ of $V$ belongs to both $U$ and $W$. There are several ways of doing this:
(i) Using the definition of $U$ and $W$, we need to solve the equations

$$
\begin{aligned}
2 a_{1}+b_{1} & =b_{2}-a_{2} \\
a_{1} & =c_{2} \\
-2 a_{1}-b_{1} & =a_{2}-b_{2} \\
-b_{1} & =-c_{2}
\end{aligned}
$$

So we have $U \cap W=\left\{3 a x^{3}+a x^{2}-3 a x-a: a \in \mathbb{R}\right\}$. Thus $3 x^{3}+x^{2}-3 x-1$ is a basis for $U \cap W$, and $\operatorname{dim}(U \cap W)=1$.
(ii) Similarly, we can use the bases for $U$ and $W$ and solve the equation

$$
\lambda_{1}\left(2 x^{3}+x^{2}-2 x\right)+\mu_{1}\left(x^{3}-x-1\right)=\lambda_{2}\left(x^{3}-x\right)+\mu_{2}\left(x^{2}-1\right)
$$

Solving this equation, we get $\mu_{1}=\mu_{2}=\lambda_{1}$, and $\lambda_{2}=2 \lambda_{1}+\mu_{1}=3 \lambda_{1}$. Again, we obtain $3 x^{3}+x^{2}-3 x-1$ as a basis for $U \cap W$.
(iii) It is also sufficient to exhibit one single vector which belongs to both $U$ and $W$; for example, the vector $3 x^{3}+x^{2}-3 x-1$ (which corresponds to $a=b=1$ in the definition of $U$, and to $a=0, b=3, c=1$ in the definition of $W$ ). Since $U \neq W$, the dimension of $U \cap W$ must then be 1 .
[4 marks]. Seen similar in exercises

We thus have $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)=3$. (Note that we have $U+W=\left\{a x^{3}+b x^{2}+c x+d: a+c=0\right\}$.) Since $U \cap W \neq\{0\}, U+W$ is not the direct sum of $U$ and $W$.
[2 marks]. Standard exercise. 20 marks in total for Question 1
2.
(a) We compute:

$$
\begin{aligned}
& f\left(u_{1}, u_{1}\right)=2 \cdot 1 \cdot 1+1 \cdot(-1)+2 \cdot(-1) \cdot(-1)=3, \\
& f\left(u_{1}, u_{2}\right)=2 \cdot 1 \cdot 1+1 \cdot(-2)+2 \cdot(-1) \cdot(-2)=4, \\
& f\left(u_{2}, u_{1}\right)=2 \cdot 1 \cdot 1+1 \cdot(-1)+2 \cdot(-2) \cdot(-1)=5 . \\
& f\left(u_{2}, u_{2}\right)=2 \cdot 1 \cdot 1+1 \cdot(-2)+2 \cdot(-2) \cdot(-2)=8 .
\end{aligned}
$$

So, the matrix of $f$ wrt $u_{1}, u_{2}$ is

$$
A=\left(\begin{array}{ll}
3 & 4 \\
5 & 8
\end{array}\right)
$$

Similarly,

$$
\begin{aligned}
& f\left(v_{1}, v_{1}\right)=2 \cdot(-2) \cdot(-2)+(-2) \cdot 1+2 \cdot 1 \cdot 1=8, \\
& f\left(v_{1}, v_{2}\right)=2 \cdot(-2) \cdot 5+(-2) \cdot 1+2 \cdot 1 \cdot 1=-20, \\
& f\left(v_{2}, v_{1}\right)=2 \cdot 5 \cdot(-2)+5 \cdot 1+2 \cdot 1 \cdot 1=-13, \\
& f\left(v_{2}, v_{2}\right)=2 \cdot 5 \cdot 5+5 \cdot 1+2 \cdot 1 \cdot 1=57,
\end{aligned}
$$

So, the matrix of $f$ wrt $v_{1}, v_{2}$ is

$$
B=\left(\begin{array}{cc}
8 & -20 \\
-13 & 57
\end{array}\right)
$$

[2 marks] Standard exercise.
To compute the change-of-basis matrix, we write $v_{j}$ as linear combinations of the $u_{j}$. (Again, this will involve solving a system of linear equations.)

$$
\begin{aligned}
(-2,1) & =-3 \cdot(1,-1)+1 \cdot(1,-2) \\
(5,1) & =11 \cdot(1,-1)-6 \cdot(1,-2) .
\end{aligned}
$$

So the change-of-basis matrix is

$$
P=\left(\begin{array}{cc}
-3 & 11 \\
1 & -6
\end{array}\right)
$$

Alternatively, we can obtain $P$ as the composition of change-of-basis matrices from the given bases to the standard basis:

$$
P=\left(\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right)^{-1} \cdot\left(\begin{array}{cc}
-2 & 5 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right)^{-1}\left(\begin{array}{cc}
-2 & 5 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-3 & 11 \\
1 & -6
\end{array}\right) .
$$

Finally, it is easily checked that

$$
P^{T} A P=\left(\begin{array}{cc}
-3 & 1 \\
11 & -6
\end{array}\right)\left(\begin{array}{ll}
3 & 4 \\
5 & 8
\end{array}\right)\left(\begin{array}{cc}
-3 & 11 \\
1 & -6
\end{array}\right)=B .
$$

[3 marks]. Seen similar in exercises.
(b) The matrix of the quadratic form

$$
q(x, y, z)=4 x^{2}-4 y^{2}+z^{2}+6 x y .
$$

with respect to the standard bases is

$$
A=\left(\begin{array}{ccc}
4 & 3 & 0 \\
3 & -4 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

[2 marks]. Standard exercise.
We can find a basis with respect to which $q$ is diagonal by finding a basis consisting of orthogonal eigenvectors of $A$. The characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\left(\begin{array}{ccc}
(\lambda-4) & -3 & 0 \\
-3 & (\lambda+4) & 0 \\
0 & 0 & (\lambda-1)
\end{array}\right)\right| \\
& =(\lambda-1)\left|\left(\begin{array}{cc}
(\lambda-4) & -3 \\
-3 & (\lambda+4)
\end{array}\right)\right| \\
& =(\lambda-1)\left(\lambda^{2}-16-9\right) \\
& =(\lambda-1)(\lambda-5)(\lambda+5),
\end{aligned}
$$

so the eigenvalues are $5,-5$ and 1 . Solving the corresponding linear equations gives eigenvectors $(3,1,0),(1,-3,0)$ and $(0,0,1)$. The desired matrix $P$ is thus given by

$$
P=\left(\begin{array}{ccc}
3 & 1 & 0 \\
1 & -3 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The desired diagonal matrix is

$$
D=P^{T} A P=\left(\begin{array}{ccc}
50 & 0 & 0 \\
0 & -50 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

[8 marks]. Seen somewhat similar in exercises. The diagonal matrix has full rank, so the rank of $q$ is 3 . The signature is the number of positive entries minus the number of negative entries, and is thus 1. The surface is a hyperboloid of one sheet.
[3 marks]. Standard exercise.
3.
(a) Let $e_{1}=x^{2}, e_{2}=x, e_{3}=1$. Then

$$
\varphi\left(e_{1}\right)=\varphi\left(x^{2}\right)=3 x^{2}-2 x+2=3 \cdot e_{1}-2 \cdot e_{2}+2 \cdot e_{3},
$$

so that the first column of the matrix should have entries $3,-2,2$. Proceeding similarly for $e_{2}$ and $e_{3}$, we get

$$
M=\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & 1 & 1 \\
2 & 1 & 1
\end{array}\right)
$$

[3 marks] Seen similar in exercises.
(b) We now compute

$$
\begin{aligned}
\operatorname{det}(\lambda I-M) & =\left|\begin{array}{ccc}
(\lambda-3) & -1 & 0 \\
2 & (\lambda-1) & -1 \\
-3 & -1 & (\lambda-1)
\end{array}\right| \\
& =(\lambda-1)\left|\begin{array}{cc}
(\lambda-3) & -1 \\
2 & (\lambda-1)
\end{array}\right|+\left|\begin{array}{cc}
(\lambda-3) & -1 \\
-2 & -1
\end{array}\right| \\
& =(\lambda-1)((\lambda-3)(\lambda-1)+2)+(1-\lambda) \\
& =(\lambda-1)\left(\lambda^{2}-4 \lambda+4\right)=(\lambda-1)(\lambda-2)^{2} .
\end{aligned}
$$

So the eigenvalues of $\lambda$ are 1 and 2 .
[4 marks] Standard exercise.
(c) To find the eigenvectors corresponding to these eigenvalues, we must solve the equations $(M-I) v=0$ and $(M-2 I) v=0$ :

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & 1 & 0 \\
-2 & 0 & 1 \\
2 & 1 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 1 & 0 \\
-2 & -1 & 1 \\
2 & 1 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

So we see that the eigenvectors with eigenvalue 1 are of the form $(\lambda,-2 \lambda, 2 \lambda)$ and those with eigenvalue 2 are of the form $(\lambda,-\lambda, \lambda)$.
[3 marks] Standard exercise.
(d) In particular, the matrix $M$ is not diagonalizable, since we can only find two linearly independent eigenvectors.
[1 mark] Standard exercise.
(e) The multiplicity of the eigenvalue 2 is two, and $(1,-1,1)$ is an eigenvector of $M$ for this eigenvalue. We need to find a vector $v=(a, b, c)$ such that $M v=v_{1}+2 v$. This is a linear equation: we have to solve

$$
(M-2 I) v=v_{1} .
$$

Writing this equation in matrix form, and transforming it into echelon form (doing the same transformations on $A-I$ as above), we get

$$
\left(\begin{array}{rrr|r}
1 & 1 & 0 & 1 \\
-2 & -1 & 1 & -1 \\
2 & 1 & -1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{lll|r}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

So $v=(a, b, c)$ is a suitable vector if and only if $a+b=1$ and $b+c=1$; for example, $v=(1,0,1)$ is a solution.
[5 marks] Seen somewhat similar in exercises.
So a basis which will put $M$ into Jordan normal form is given by

$$
(1,-1,1),(1,0,1),(1,-2,2) .
$$

To answer the question, we have to transform this basis back into our original vector space, where it becomes

$$
B=\left(x^{2}-x+1, x^{2}+1, x^{2}-2 x+2\right) .
$$

[2 marks] Unseen.
We have

$$
\begin{aligned}
\varphi\left(x^{2}-x+1\right) & =2 x^{2}-2 x+2=2\left(x^{2}-2+1\right)+0 \cdot\left(x^{2}+1\right)+0 \cdot\left(x^{2}-2 x+2\right), \\
\varphi\left(x^{2}+1\right) & =3 x^{2}-x+3=1 \cdot\left(x^{2}-x+1\right)+2 \cdot\left(x^{2}+1\right)+0 \cdot\left(x^{2}-2 x+2\right), \\
\varphi\left(x^{2}-2 x+2\right) & =0 \cdot\left(x^{2}+1\right)+0 \cdot\left(x^{2}-x+1\right)+1 \cdot\left(x^{2}-2 x+2\right)
\end{aligned}
$$

So the matrix of $\varphi$ with respect to $B$ is indeed

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

as expected.
4.
(a) A group is a set $G$ together with a binary operation * such that: (G1) for all $g_{1}, g_{2} \in G, g_{1} * g_{2} \in G ;(\mathbf{G} 2)$ for all $g_{1}, g_{2}, g_{3} \in G, g_{1} *\left(g_{2} * g_{3}\right)=\left(g_{1} * g_{2}\right) * g_{3}$; (G3) there exists an element $e \in G$ such that, for all $g \in G, e * g=g * e=g$; (G4) for every $g \in G$, there exists $g^{-1} \in G$ such that $g * g^{-1}=g^{-1} * g=e$.
[1 marks]. Standard definition from lectures.
If $G, H$ are groups, then a map $\varphi: G \rightarrow H$ is a homomorphism if, for all $g_{1}, g_{2} \in G$, $\varphi\left(g_{1} *_{1} g_{2}\right)=\varphi\left(g_{1}\right) *_{2} \varphi\left(g_{2}\right)$, where $*_{1}$ is the group law in $G$ and $*_{2}$ is the group law in $H$.
[1 mark]. Standard definition from lectures. The map $\varphi$ is injective if, for all $g_{1}, g_{2} \in G, \varphi\left(g_{1}\right)=\varphi\left(g_{2}\right) \Rightarrow g_{1}=g_{2}$. The map $\varphi$ is surjective if, for all $h \in H$, there exists $g \in G$ such that $\varphi(g)=h$.
[1 mark]. Standard definitions from lectures.
(b) Let $g_{1}=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ and $g_{2}=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$ be arbitrary elements of $G$. We have

$$
\begin{aligned}
\varphi\left(g_{1}+g_{2}\right) & =3\left(\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)\right)-6\left(\left(c_{1}+c_{2}\right)-\left(d_{1}+d_{2}\right)\right) \\
& =3 a_{1}+3 a_{2}+3 b_{1}+3 b_{2}-6 c_{1}-6 c_{2}+6 d_{1}+6 d_{2} \\
& =\left(3\left(a_{1}+3 b_{1}\right)-6\left(c_{1}-d_{1}\right)\right)+\left(3\left(a_{2}+3 b_{2}\right)-6\left(c_{2}-d_{2}\right)\right) \\
& =\varphi\left(g_{1}\right)+\varphi\left(g_{2}\right) .
\end{aligned}
$$

Hence $\varphi$ is a homomorphism.
[2 marks]. Seen similar in exercises.
We have e.g.

$$
\varphi\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=3=\varphi\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

so $\varphi$ is not injective. For any matrix $A \in G$, the value $\varphi(A)$ will be an integer multiple of 3 . In particular, $\varphi(A) \neq 1$ for all $A \in G$, so $\varphi$ is not surjective.
[ $\mathbf{2}$ marks]. Seen similar in exercises.
(c) Statements (i) and (iii) are true. Statement (ii) is false when the group is nonabelian; an example is given e.g. by taking the symmetric group $\mathcal{S}_{3}$.
[3 marks]. From Lectures.
Similarly, a counterexample in $\mathcal{S}_{3}$ to (iv) is given by letting $a$ be the permutation which exchanges the first two elements, and $b$ and $c$ be the two cyclic permutations.
[2 marks]. Unseen.
(d) First of all, since $A=A C, C$ must be the identity element of the group. So we can fill in the corresponding column and row:

| $*$ | A | B | C | D | E | F |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| A | B | $?$ | A | E | $?$ | $?$ |
| B | C | $?$ | B | $?$ | $?$ | $?$ |
| C | A | B | C | D | E | F |
| D | $?$ | E | D | C | $?$ | $?$ |
| E | $?$ | $?$ | E | A | $?$ | $?$ |
| F | $?$ | $?$ | F | $?$ | $?$ | C |

Next, note that $B A=A A A=A B=C$. Furthermore, $B B=A A A A=A C=A$.

| $*$ | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | A | E | $?$ | $?$ |
| B | C | A | B | $?$ | $?$ | $?$ |
| C | A | B | C | D | E | F |
| D | $?$ | E | D | C | $?$ | $?$ |
| E | $?$ | $?$ | E | A | $?$ | $?$ |
| F | $?$ | $?$ | F | $?$ | $?$ | C |

Every line and column in the group table must contain each element. The first row is only missing elements $D$ and $F$; however, the last column already contains an $F$. So we can complete this row:

| $*$ | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | A | E | F | D |
| B | C | A | B | $?$ | $?$ | $?$ |
| C | A | B | C | D | E | F |
| D | $?$ | E | D | C | $?$ | $?$ |
| E | $?$ | $?$ | E | A | $?$ | $?$ |
| F | $?$ | $?$ | F | $?$ | $?$ | C |

Similarly, we can fill in the second row, which is still missing $D, E$ and $F$. Continuing in this way, we fill in the remaining entries:

| $*$ | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | A | E | F | D |
| B | C | A | B | F | D | E |
| C | A | B | C | D | E | F |
| D | F | E | D | C | B | A |
| E | D | F | E | A | C | B |
| F | E | D | F | B | A | C. |

[5 marks]. Seen somewhat similar in exercises.
(e) The permutation group $\mathcal{S}_{3}$ has the same group table (letting $C$ be the identity, $A$ and $B$ the two cyclic permutations, and $D, E$ and $F$ the permutations which keep one element fixed while switching the other two).
[3 marks]. Unseen.
5.
(a) The rank of $\varphi$ is the dimension of $\operatorname{Im}(\varphi)$. The nullity of $\varphi$ is the dimension of $\operatorname{ker}(\varphi)$.
[1 mark]. Standard definitions from lectures.
The rank and nullity theorem states that

$$
\operatorname{dim} V=\operatorname{rank}(\varphi)+\operatorname{nullity}(\varphi)
$$

[1 mark]. Standard theorem from lectures.
For $v_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ in $\mathbb{R}^{3}$ and $\lambda, \mu \in \mathbb{R}$, we have

$$
\begin{aligned}
& \varphi\left(\lambda v_{1}+\mu v_{2}\right) \\
& \quad=\left(\begin{array}{cc}
\left(\left(\lambda x_{1}+\mu x_{2}\right)+\left(\lambda y_{1}+\mu y_{2}\right)+\left(\lambda z_{1}+\mu z_{2}\right)\right) & \left(\lambda z_{1}+\mu z_{2}\right)+\left(\lambda y_{1}+\mu y_{2}\right) \\
2\left(\lambda x_{1}+\mu x_{2}\right)-\left(\lambda y_{1}+\mu y_{2}\right)-\left(\lambda z_{1}+\mu z_{2}\right) & 0
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
\lambda\left(x_{1}+y_{1}+z_{1}\right)+\mu\left(x_{2}+y_{2}+z_{2}\right) & \lambda\left(z_{1}+y_{1}\right)+\mu\left(z_{2}+y_{2}\right) \\
\lambda\left(2 x_{1}-y_{1}-z_{1}\right)+\mu\left(2 x_{2}-y_{2}-z_{2}\right) & 0
\end{array}\right) \\
& \quad=\lambda \varphi\left(v_{1}\right)+\mu \varphi\left(v_{2}\right) .
\end{aligned}
$$

Thus $\varphi$ is linear.
[2 marks]. Standard exercise.
There are several ways of determining the rank and nullity; usually we would want to use the rank and nullity theorem. For example, let $(x, y, z) \in \mathbb{R}^{3}$. Then $(x, y, z) \in \operatorname{ker}(\varphi)$ if and only if

$$
x+y+z=0, \quad z+y=0 \quad \text { and } \quad 2 x-y-z=0,
$$

which is clearly the case if and only if $z=-y$ and $x=0$. So

$$
\operatorname{ker}(\varphi)=\{(0, y,-y): y \in \mathbb{R}\}=\operatorname{span}((0,1,-1))
$$

So $\operatorname{nullity}(\varphi)=1$. Consequently $\operatorname{rank}(\varphi)=\operatorname{dim}\left(\mathbb{R}^{3}\right)-\operatorname{nullity}(\varphi)=2$.
[3 marks]. Standard exercise.
(Remark: We have $\operatorname{Im}(\varphi)=\left\{\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right): 2 a=c+3 b\right\}$.)
(b) We have

$$
\begin{aligned}
\operatorname{ker}(\varphi) & =\{(x, y, z, w): x+z=w, 2 x=z+2 w, 4 x+z=4 w\} \\
& =\{(x, y, z, w): z=0, x=w\}=\left\{(x, y, 0, x): x, y \in \mathbb{R}^{4}\right\} .
\end{aligned}
$$

A basis for this space is given by $(1,0,0,1),(0,1,0,0)$, so nullity $(\varphi)=2$.
[2 marks]. Standard exercise.
In particular, we see that $\operatorname{rank}(\varphi)=4-2=2$, so we only need to find two linearly independent vectors in the image of $\varphi$. Two such vectors are given by $v_{1}=\varphi(0,0,1,0)=(1,-1,1)$ and $v_{2}=\varphi(1,0,0,0)=(1,2,4)$. (It is easy to check that $\operatorname{Im}(\varphi)=\{(x, y, z): z=2 x+y\}$, so any basis of this space gives a correct answer.)
[2 marks]. Standard exercise.
(c) To put $\varphi$ into standard form, we start by extending the given basis of $\operatorname{ker}(\varphi)$ to a basis of $\mathbb{R}^{4}$, for instance to the basis

$$
B=((0,0,1,0),(1,0,0,0),(1,0,0,1),(0,1,0,0))
$$

We need to check that these are linearly independent, but for this choice of vectors, this is immediately obvious.
[3 marks].
Now we need to take the two vectors of $B$ which are not in the kernel and compute their images:

$$
\varphi(0,0,1,0)=(1,-1,1) \quad \text { and } \quad \varphi(1,0,0,0)=(1,2,4) .
$$

We extend these two vectors to a basis of $\mathbb{R}^{3}$, e.g. by taking

$$
C=((1,-, 1,1),(1,2,4),(1,0,0)) .
$$

Again we need to check that this really is a basis of $\mathbb{R}^{3}$. We could either check that the three vectors are linearly independent. Alternatively, it is easy to check directly that $(1,0,0)$ is not in the image of $\varphi$.
[3 marks].
It remains to compute the matrix $A$ : we have

$$
\begin{aligned}
& \varphi(0,0,1,0)=(1,-1,1)=1 \cdot(1,-1,1)+0 \cdot(1,2,4)+0 \cdot(1,0,0), \\
& \varphi(1,0,0,0)=(1,2,4)=0 \cdot(1,-1,1)+1 \cdot(1,2,4)+0 \cdot(1,0,0), \\
& \varphi(1,0,0,1)=(0,0,0)=0 \cdot(1,-1,1)+0 \cdot(1,2,4)+0 \cdot(1,0,0), \\
& \varphi(0,1,0,0)=(0,0,0)=0 \cdot(1,-1,1)+0 \cdot(1,2,4)+0 \cdot(1,0,0) .
\end{aligned}
$$

So we indeed have

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
$$

as required.
[3 marks]. Similar example seen on exercise sheet.
20 marks in total for Question 5
6.
(a) A function $\varphi: V \rightarrow V$ is an isomorphism if $\varphi$ is linear, injective and surjective.
[ 2 marks]. Standard definition from lectures.
(b) The composition $\varphi \circ \psi$ of two isomorphisms is again an isomorphism. Indeed, we see that linearity holds:

$$
\varphi\left(\psi\left(\lambda v_{1}+\mu v_{2}\right)\right)=\varphi\left(\lambda \psi\left(v_{1}\right)+\mu \psi\left(v_{2}\right)\right)=\lambda \varphi\left(\psi\left(v_{1}\right)\right)+\mu \varphi\left(\psi\left(v_{2}\right)\right) .
$$

If $\varphi\left(\psi\left(v_{1}\right)\right)=\varphi\left(\psi\left(v_{2}\right)\right)$, then $\psi\left(v_{1}\right)=\psi\left(v_{2}\right)$ by injectivity of $\varphi$, and thus $v_{1}=v_{2}$ by injectivity of $\psi$. So $\varphi \circ \psi$ is injective.

Let $w \in V$. Then by surjectivity of $\varphi$, there is $v_{1} \in V$ such that $\varphi\left(v_{1}\right)=w$. By surjectivity of $\psi$, there is $v \in V$ such that $\psi(v)=v_{1}$. Then $\varphi(\psi(v))=\varphi\left(v_{1}\right)=w$, so $\varphi \circ \psi$ is surjective.
[4 marks].
Associativity is clearly satisfied. The neutral element is given by the identity map $\varphi(v)=v$. The inverse element of $\varphi$ is given by its inverse $\varphi^{-1}$.
[3 marks]. Similar examples seen in exercises and lecture.
(c) If $V$ is $n$-dimensional, the dimension of $L(V, V)$ is $n^{2}$. (We saw in lectures that $L(V, V)$ is isomorphic to the space of $n \times n$-matrices; an isomorphism is given by the function which takes a linear map to its representation with respect to a given basis.)
[3 marks]. Seen (once) in lecture.
(d) The set of isomorphisms is not a subspace of $L(V, V)$, as it does not contain the zero element; i.e. the linear $\operatorname{map} \varphi(v)=0$.
[4 marks]. Unseen.
(e) $L(V, V)$ is not a group with respect to composition, since its identity element would have to be the identity map $\varphi(v)=v$, but e.g. the zero map $\varphi(0)=0$ does not have an inverse.

