

1.

- (a) Let V be a vector space. Say what it means for a subset $\{v_1, \ldots, v_k\}$ of V to be linearly independent.
- (b) Let $V = \mathbb{R}^3$, and let U be the subspace of V spanned by

$$u_1 = (1, -1, 1), \quad u_2 = (1, 2, -1), \quad u_3 = (3, 0, 1).$$

Find the dimension of U.

(c) Let W be the subspace of V spanned by

$$w_1 = (-4, 1, -2), \quad w_2 = (2, 1, 0), \quad w_3 = (5, 1, 1).$$

Show that U = W.

(d) Now let $V = \text{Pol}_3(\mathbb{R})$ be the vector space of polynomials of degree at most three with real coefficients. Let

$$U = \{(2a+b)x^3 + ax^2 - (2a+b)x - b : a, b \in \mathbb{R}\}.$$

Show that U is a subspace of V.

(e) Similarly,

$$W = \{(b-a)x^3 + cx^2 + (a-b)x - c : a, b, c \in \mathbb{R}\}\$$

is a subspace of V [you do not need to show this]. What are the dimensions of each of $U, W, U \cap W$ and U + W? Is it true or false that $U + W = U \oplus W$?

2.

(a) Let f be the bilinear form on \mathbb{R}^2 defined by

$$f((x_1, y_1), (x_2, y_2)) = 2x_1x_2 + x_1y_2 + 2y_1y_2$$

Let $u_1 = (1, -1)$, $u_2 = (1, -2)$. Compute $f(u_1, u_1)$, $f(u_1, u_2)$, $f(u_2, u_1)$, $f(u_2, u_2)$. Find the matrix A of f relative to the basis $\{u_1, u_2\}$. Find the matrix B of f relative to the basis $\{v_1, v_2\}$, where $v_1 = (-2, 1)$, $v_2 = (5, 1)$.

Find the change of basis matrix P from $\{u_1, u_2\}$ to $\{v_1, v_2\}$ and check that $B = P^T A P$.

(b) Consider the quadratic form

$$q(x, y, z) = 4x^2 - 4y^2 + z^2 + 6xy.$$

Give the matrix A representing q with respect to the standard basis. Find a diagonal matrix D equivalent to A and the matrix P which describes the change of basis from the standard basis to the basis in which q is diagonal. What are the rank and signature of q? What type of quadric surface is described by the equation q(x, y, z) = 2?

[20 marks]

3. Let V be the vector space of polynomials in x of degree at most 2 with coefficients in \mathbb{R} . Let the linear map $\varphi: V \to V$ be defined by

$$\varphi(ax^2 + bx + c) = (3a + b)x^2 + (c + b - 2a)x + 2a + b + c.$$

[You need not show that φ is linear.]

- (a) Find M, the matrix representation of φ with respect to the basis $\{x^2, x, 1\}$.
- (b) What are the eigenvalues and eigenvectors of M?
- (c) Is M diagonalizable?
- (d) Find a basis B of V such that the matrix A of φ with respect to B is in Jordan normal form. (When you have found B, you should compute A to check that it is in Jordan normal form.)

4.

- (a) Define the terms: group, homomorphism, injective, surjective.
- (b) Let G be the group of 2×2 matrices with integer entries, under matrix addition. Let H be the group of integers under addition. [You need not show that these are groups]. Let $\varphi: G \to H$ be defined by

$$\varphi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 3(a+b) - 6(c-d).$$

Show that φ is a homomorphism. State, giving reasons, whether φ is injective. State, giving reasons, whether φ is surjective.

- (c) Let G be a group. Which of the following statements are true, and which are false? Give counterexamples to any false statements. You do not need to prove the true statements.
 - (i) Let $a, b \in G$, and suppose that ab = a. Then b is the identity element of G.
 - (ii) Let $a, b \in G$. Then ab = ba.
 - (iii) If $a, b, c \in G$ with ab = ac, then b = c.
 - (iv) If $a, b, c \in G$ with ab = ca, then b = c.
- (d) The following is a partially completed group table. Fill in the missing entries. You must justify why each choice of entry is the only one possible.

				D		
A	В	?	Α	Е	?	?
В	С	?	?	?	?	?
\mathbf{C}	?	?	?	?	?	?
D	?	\mathbf{E}	?	E ? ? C	?	?
\mathbf{E}	?	?	?	A ?	?	?
F	?	?	?	?	?	С

(e) Name a known group with the same group table.

THE UNIVERSITY of LIVERPOOL

5.

(a) Let V and W be finite-dimensional vector spaces, and let $\varphi:V\to W$ be linear. Define the rank and nullity of φ . State the rank and nullity theorem. Let $V=\mathbb{R}^3$, and let $W:=\mathbb{R}^{2\times 2}$ be the space of real 2×2 -matrices. Define $\varphi:V\to W$ by

$$\varphi(x,y,z) = \begin{pmatrix} x+y+z & z+y \\ 2x-y-z & 0 \end{pmatrix}.$$

Show that φ is a linear map and compute its rank and nullity.

(b) Let the linear map $\varphi : \mathbb{R}^4 \to \mathbb{R}^3$ be given by

$$\varphi(x, y, z, w) = (x + z - w, 2x - z - 2w, 4x + z - 4w).$$

[You need not show that φ is linear.]

Find a basis for U, the image of φ , and a basis for W, the kernel of φ . What are the rank and the nullity of φ ?

Find bases B of \mathbb{R}^4 and C of \mathbb{R}^3 such that the matrix A of φ with respect to B and C is in the standard form

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(When you have found B and C, you should compute the matrix A to verify that it has the required form.)

- **6.** Let V be a vector space.
- (a) Say what it means for a function $\varphi: V \to V$ to be an isomorphism of V to itself.
- (b) Show that the set of isomorphisms from V to itself is a group under composition.
- (c) Suppose that V is finite-dimensional, and let L(V, V) be the vector space of linear maps $\varphi : V \to V$, with the usual operations. What is the dimension of L(V, V)?
- (d) Is the set of isomorphisms $\varphi:V\to V$ a subspace of L(V,V)? If so, compute its dimension. Otherwise, show that one of the subspace axioms is not satisfied.
- (e) Is L(V, V) a group with respect to composition? (Justify your answer.)