THE UNIVERSITY
of LIVERPOOL
1.
(a) Let V be a vector space. Say what it means for a subset $\left\{v_{1}, \ldots, v_{k}\right\}$ of V to be linearly independent.
(b) Let $V=\mathbb{R}^{3}$, and let U be the subspace of V spanned by

$$
u_{1}=(1,-1,1), \quad u_{2}=(1,2,-1), \quad u_{3}=(3,0,1)
$$

Find the dimension of U.
(c) Let W be the subspace of V spanned by

$$
w_{1}=(-4,1,-2), \quad w_{2}=(2,1,0), \quad w_{3}=(5,1,1) .
$$

Show that $U=W$.
(d) Now let $V=\operatorname{Pol}_{3}(\mathbb{R})$ be the vector space of polynomials of degree at most three with real coefficients. Let

$$
U=\left\{(2 a+b) x^{3}+a x^{2}-(2 a+b) x-b: a, b \in \mathbb{R}\right\} .
$$

Show that U is a subspace of V.
(e) Similarly,

$$
W=\left\{(b-a) x^{3}+c x^{2}+(a-b) x-c: a, b, c \in \mathbb{R}\right\}
$$

is a subspace of V [you do not need to show this]. What are the dimensions of each of $U, W, U \cap W$ and $U+W$? Is it true or false that $U+W=U \oplus W$?

THE UNIVERSITY of LIVERPOOL

2.

(a) Let f be the bilinear form on \mathbb{R}^{2} defined by

$$
f\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=2 x_{1} x_{2}+x_{1} y_{2}+2 y_{1} y_{2}
$$

Let $u_{1}=(1,-1), u_{2}=(1,-2)$. Compute $f\left(u_{1}, u_{1}\right), f\left(u_{1}, u_{2}\right), f\left(u_{2}, u_{1}\right), f\left(u_{2}, u_{2}\right)$. Find the matrix A of f relative to the basis $\left\{u_{1}, u_{2}\right\}$. Find the matrix B of f relative to the basis $\left\{v_{1}, v_{2}\right\}$, where $v_{1}=(-2,1), v_{2}=(5,1)$.
Find the change of basis matrix P from $\left\{u_{1}, u_{2}\right\}$ to $\left\{v_{1}, v_{2}\right\}$ and check that $B=P^{T} A P$.
(b) Consider the quadratic form

$$
q(x, y, z)=4 x^{2}-4 y^{2}+z^{2}+6 x y .
$$

Give the matrix A representing q with respect to the standard basis. Find a diagonal matrix D equivalent to A and the matrix P which describes the change of basis from the standard basis to the basis in which q is diagonal. What are the rank and signature of q ? What type of quadric surface is described by the equation $q(x, y, z)=2$?
3. Let V be the vector space of polynomials in x of degree at most 2 with coefficients in \mathbb{R}. Let the linear map $\varphi: V \rightarrow V$ be defined by

$$
\varphi\left(a x^{2}+b x+c\right)=(3 a+b) x^{2}+(c+b-2 a) x+2 a+b+c .
$$

[You need not show that φ is linear.]
(a) Find M, the matrix representation of φ with respect to the basis $\left\{x^{2}, x, 1\right\}$.
(b) What are the eigenvalues and eigenvectors of M ?
(c) Is M diagonalizable?
(d) Find a basis B of V such that the matrix A of φ with respect to B is in Jordan normal form. (When you have found B, you should compute A to check that it is in Jordan normal form.)

THE UNIVERSITY of LIVERPOOL

4.

(a) Define the terms: group, homomorphism, injective, surjective.
(b) Let G be the group of 2×2 matrices with integer entries, under matrix addition. Let H be the group of integers under addition. [You need not show that these are groups]. Let $\varphi: G \rightarrow H$ be defined by

$$
\varphi\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=3(a+b)-6(c-d)
$$

Show that φ is a homomorphism. State, giving reasons, whether φ is injective. State, giving reasons, whether φ is surjective.
(c) Let G be a group. Which of the following statements are true, and which are false? Give counterexamples to any false statements. You do not need to prove the true statements.
(i) Let $a, b \in G$, and suppose that $a b=a$. Then b is the identity element of G.
(ii) Let $a, b \in G$. Then $a b=b a$.
(iii) If $a, b, c \in G$ with $a b=a c$, then $b=c$.
(iv) If $a, b, c \in G$ with $a b=c a$, then $b=c$.
(d) The following is a partially completed group table. Fill in the missing entries. You must justify why each choice of entry is the only one possible.

$*$	A	B	C	D	E	F
A	B	$?$	A	E	$?$	$?$
B	C	$?$	$?$	$?$	$?$	$?$
C	$?$	$?$	$?$	$?$	$?$	$?$
D	$?$	E	$?$	C	$?$	$?$
E	$?$	$?$	$?$	A	$?$	$?$
F	$?$	$?$	$?$	$?$	$?$	C

(e) Name a known group with the same group table.

THE UNIVERSITY of LIVERPOOL

5.

(a) Let V and W be finite-dimensional vector spaces, and let $\varphi: V \rightarrow W$ be linear. Define the rank and nullity of φ. State the rank and nullity theorem.
Let $V=\mathbb{R}^{3}$, and let $W:=\mathbb{R}^{2 \times 2}$ be the space of real 2×2-matrices. Define $\varphi: V \rightarrow W$ by

$$
\varphi(x, y, z)=\left(\begin{array}{cc}
x+y+z & z+y \\
2 x-y-z & 0
\end{array}\right) .
$$

Show that φ is a linear map and compute its rank and nullity.
(b) Let the linear map $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be given by

$$
\varphi(x, y, z, w)=(x+z-w, 2 x-z-2 w, 4 x+z-4 w) .
$$

[You need not show that φ is linear.]
Find a basis for U, the image of φ, and a basis for W, the kernel of φ. What are the rank and the nullity of φ ?

Find bases B of \mathbb{R}^{4} and C of \mathbb{R}^{3} such that the matrix A of φ with respect to B and C is in the standard form

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

(When you have found B and C, you should compute the matrix A to verify that it has the required form.)

THE UNIVERSITY of LIVERPOOL
6. Let V be a vector space.
(a) Say what it means for a function $\varphi: V \rightarrow V$ to be an isomorphism of V to itself.
(b) Show that the set of isomorphisms from V to itself is a group under composition.
(c) Suppose that V is finite-dimensional, and let $L(V, V)$ be the vector space of linear maps $\varphi: V \rightarrow V$, with the usual operations. What is the dimension of $L(V, V)$?
(d) Is the set of isomorphisms $\varphi: V \rightarrow V$ a subspace of $L(V, V)$? If so, compute its dimension. Otherwise, show that one of the subspace axioms is not satisfied.
(e) Is $L(V, V)$ a group with respect to composition? (Justify your answer.)

