THE UNIVERSITY of LIVERPOOL

1. (a) (i) Let $f(x+i y)=u(x, y)+i v(x, y)$, where x, y, u and v are real. Derive the Cauchy-Riemann equations which hold where f is complex differentiable.
(ii) Find the real and imaginary parts of the function

$$
f(z)=i|z|^{2}-z^{2} .
$$

Show that f satisfies both Cauchy-Riemann equations if and only if $z=0$.
(iii) Find a holomorphic function on \mathbf{C} with the real part $u(x, y)=$ $y-2 x y$.
(b) Sketch the path $\gamma:[-1,1] \rightarrow \mathbf{C}$ given by

$$
\gamma(t)=\left\{\begin{array}{lr}
2 t, & -1 \leq t \leq 0 \\
-t-i t, & 0 \leq t \leq 1
\end{array}\right.
$$

Evaluate $\int_{\gamma} \operatorname{Im} z d z$ and $\int_{\gamma} z d z$.
2. (a) State Cauchy's Integral Formula.
(b) Evaluate the following integrals, in each case giving a brief justification for your answer:

$$
\int_{\gamma(i ; 1)} \frac{d z}{z^{2}-4} ; \quad \int_{\gamma(-6 ; 5)} \frac{d z}{z^{2}-4} ; \quad \int_{\gamma(-i ; 10)} \frac{d z}{z^{2}-4}
$$

Here $\gamma(a ; r)$ denotes the circle, centre a and radius r, oriented anticlockwise.
(c) (i) Find the residues of the function

$$
f(z)=\frac{1}{z^{2}-5 z+1}
$$

(ii) Use contour integration and the result of (i) to determine

$$
\int_{0}^{2 \pi} \frac{d \theta}{5-2 \cos \theta}
$$

THE UNIVERSITY
 of LIVERPOOL

3. (a) Find the Taylor series up to and including the term z^{5} (5-jet) of each of the following functions:

$$
\text { (i) } \sinh \left(2 z^{4}+z\right) ; \quad \text { (ii) } \quad \frac{1}{\cos ^{2}(z)}
$$

(b) Give the definition of a simple pole singularity.

Determine the type of singularity exhibited by the function

$$
f(z)=\frac{\sin 2 z}{(2 z+\pi) z^{3} \cos z}
$$

at $(i) z=-\pi / 2, \quad$ (ii) $z=0, \quad$ (iii) $z=\pi / 2$. If the singularity is a simple pole determine the residue, and if it is removable determine the limiting value.
4. (a) Write down the Laplace equation for a function $v(x, y)$ of two real variables. Show that the imaginary part of a holomorphic function satisfies the Laplace equation.
(b) For what value of a real constant $k>0$ can the function

$$
v(x, y)=e^{2 x} \cdot \sin (k y)
$$

be the imaginary part of a function $f(z)=f(x+i y)$ holomorphic on \mathbf{C} ?
(c) Write down the expression of the derivative of a holomorphic function in terms of the partial derivatives of its imaginary part only. Apply this to determine the derivative $g(z)=f^{\prime}(z)$ of a holomorphic function with the imaginary part v you obtained in (b). Express g in terms of z only (not x and y).
(d) Show that, for the function g found in (c),

$$
g(z)=-2 \quad \Longleftrightarrow \quad z=\frac{i}{2} \pi(2 n+1) \text { for some integer } n
$$

THE UNIVERSITY
 of LIVERPOOL

5. (i) Prove that, if $z^{2} \neq-i$, then

$$
\sum_{n=0}^{m}\left(i z^{2}\right)^{n}=\frac{i z^{2}\left(i^{m} z^{2 m}\right)-1}{i z^{2}-1}
$$

Hence show that $\sum_{n=0}^{\infty} i^{n} z^{2 n}$ is convergent for $|z|<1$ and find a formula for the sum of this series.

Assuming that the term-by-term differentiation is valid, find the sum of the series

$$
\sum_{n=1}^{\infty} n i^{n} z^{2 n}
$$

for $|z|<1$.
(ii) What is the radius of convergence of a power series?

Find the radius of convergence R of the series

$$
\sum_{n=0}^{\infty} \frac{(2 i)^{n}}{n^{2}+1} z^{n}
$$

Determine the convergence or divergence of this series for $|z|=R$. Make sure that your argument applies to all z with $|z|=R$.
6. (a) State Laurent's Theorem.
(b) Sketch the annulus $\{z \in \mathbf{C}: 2<|z-2 i|<3\}$, and mark the poles of the function

$$
f(z)=\frac{10}{z^{2}-5 i z}
$$

on your sketch.
(c) Find the Laurent expansion of $f(z)$ valid in the above annulus.
(d) Determine whether this expansion converges at $z=-2+i$.

THE UNIVERSITY
 of LIVERPOOL

7. (a) State the Estimation Theorem and give a proof of the first inequality.
(b) Sketch the path $\gamma_{R}:[-\pi, 0] \rightarrow \mathbf{C}$ defined by $\gamma_{R}(t)=R e^{-i t}$, where $R>0$.

Prove that

$$
\int_{\gamma_{R}} \frac{e^{i z}}{\left(z^{2}+1\right)^{2}} d z \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty .
$$

By integrating $\frac{e^{i z}}{\left(z^{2}+1\right)^{2}}$ along a suitable contour, find $\int_{-\infty}^{\infty} \frac{\cos (x)}{\left(x^{2}+1\right)^{2}} d x$.
8. (a) State Liouville's Theorem.
(b) Find the principal value of the integral

$$
\int_{-\infty}^{\infty} \frac{\sin (x)}{(x+1)\left(x^{2}+2 x+2\right)} d x
$$

by integrating an appropriate holomorphic function round a large semicircle in the upper half-plane, indented at $z=-1$.

State without proof any results you use on the limiting values of the integrals round the semicircular parts of the contour.

