THE UNIVERSITY
 of LIVERPOOL

1. (a) (i) Let $f(x+i y)=u(x, y)+i v(x, y)$, where x, y, u and v are real. Derive the Cauchy-Riemann equations which hold where f is holomorphic.
(ii) Find the real and imaginary parts of the function

$$
f(z)=|z|^{2}-z^{2}
$$

Show that f satisfies both Cauchy-Riemann equations if and only if $z=0$.
(iii) Find a holomorphic function on \mathbf{C} with the imaginary part $v(x, y)=$ $3 x^{2}-3 y^{2}$.
(b) Sketch the path $\gamma:[-1,2] \rightarrow \mathbf{C}$ given by

$$
\gamma(t)=\left\{\begin{array}{lr}
i t, & -1 \leq t \leq 1 \\
2 t-2+i, & 1 \leq t \leq 2
\end{array}\right.
$$

Evaluate $\int_{\gamma} \operatorname{Im} z d z$.
2. (a) State Cauchy's Theorem.
(b) Evaluate the following integrals, in each case giving a brief justification for your answer:

$$
\int_{\gamma(6 ; 1)} \frac{d z}{z^{2}+36} ; \quad \int_{\gamma(-5 i ; 2)} \frac{d z}{z^{2}+36} ; \quad \int_{\gamma(0 ; 10)} \frac{d z}{z^{2}+36} .
$$

Here $\gamma(a ; r)$ denotes the circle, centre a and radius r, oriented anticlockwise.
(c) (i) Find the residues of the function

$$
f(z)=\frac{1}{z^{2}+3 z+1}
$$

(ii) Use contour integration and the result of (i) to determine

$$
\int_{0}^{2 \pi} \frac{d \theta}{2 \cos \theta+3}
$$

THE UNIVERSITY
 of LIVERPOOL

3. (a) Find the 5 -jet at 0 (the Taylor series up to and including the term z^{5}) of each of the following functions:

$$
\text { (i) } \sin \left(z^{4}-z\right) ; \quad \text { (ii) } \frac{1}{\cosh ^{2}(2 z)}
$$

(b) Give the definition of a removable singularity.

Determine the type of singularity exhibited by the function

$$
f(z)=\frac{\cos z}{(2 z-\pi)^{2} \cdot \sin 2 z}
$$

at $(i) z=0, \quad(i i) z=\pi / 2, \quad$ (iii) $z=-\pi / 2$. If the singularity is a simple pole determine the residue, and if it is removable determine the limiting value.
4. (a) Write down the Laplace equation for a function $u(x, y)$ of two real variables. Show that the real part of a holomorphic function satisfies this equation.
(b) For what value of a real constant $k>0$ can the function

$$
u(x, y)=e^{k x} \cdot \sin (2 y)
$$

be the real part of a function $f(z)=f(x+i y)$ holomorphic on \mathbf{C} ?
(c) Write down the expression of the derivative of a holomorphic function in terms of the partial derivatives of its real part. Apply this to determine the derivative $g(z)=f^{\prime}(z)$ of a holomorphic function with the real part v you obtained in (b). Express g in terms of z (not x and y).
(d) Show that, for the function g found in (c),

$$
g(z)=2 \quad \Longleftrightarrow \quad z=i\left(\frac{\pi}{4}+\pi n\right) \text { for some integer } n
$$

THE UNIVERSITY
 of LIVERPOOL

5. (i) Prove that, if $z^{4} \neq \frac{1}{16}$, then

$$
\sum_{n=0}^{r}\left(16 z^{4}\right)^{n}=\frac{1-16^{r+1} z^{4 r+4}}{1-16 z^{4}} .
$$

Hence show that $\sum_{n=0}^{\infty} 16^{n} z^{4 n}$ is convergent for $|z|<\frac{1}{2}$ and find a formula for the sum of this series.

Assuming that the term-by-term differentiation is valid, find the sum of the series

$$
\sum_{n=1}^{\infty} n 16^{n} z^{4 n}
$$

for $|z|<\frac{1}{2}$.
(ii) What is the radius of convergence of a power series?

Find the radius of convergence R of the series

$$
\sum_{n=0}^{\infty} \frac{5^{n}}{n^{2}+3} z^{n}
$$

Determine the convergence or divergence of this series for $|z|=R$. [Make sure that your argument applies to all z with $|z|=R$.]
6. (a) State Laurent's Theorem.
(b) Sketch the annulus $\{z \in \mathbf{C}: 1<|z-4|<4\}$, and mark the poles of the function

$$
f(z)=\frac{10}{z^{2}-5 z}
$$

on your sketch.
(c) Find the Laurent expansion of $f(z)$ valid in the above annulus.
(d) Determine whether this expansion converges at $z=1-3 i$.

THE UNIVERSITY
 of LIVERPOOL

7. (a) State the Corollary of the Estimation Theorem and derive it from the Theorem itself.
(b) Sketch the path $\gamma_{R}:[0, \pi] \rightarrow \mathbf{C}$ defined by $\gamma_{R}(t)=R e^{i t}$, where $R>0$.

Prove that

$$
\int_{\gamma_{R}} \frac{e^{4 i z}}{\left(z^{2}+8 z+17\right)^{2}} d z \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty
$$

By integrating $e^{4 i z} /\left(z^{2}+8 z+17\right)^{2}$ along a suitable contour, find

$$
\int_{-\infty}^{\infty} \frac{\cos (4 x)}{\left(x^{2}+8 x+17\right)^{2}} d x
$$

8. (a) State Cauchy's Residue Theorem.
(b) Find the principal value of the integral

$$
\int_{0}^{\infty} \frac{x \sin (2 x)}{\left(x^{2}-c^{2}\right)\left(x^{2}+16\right)} d x
$$

by integrating an appropriate holomorphic function round a large semicircle in the upper half-plane, indented both at $z=c$ and $z=-c$.

State without proof any results you use on the limiting values of the integrals round the semicircular parts of the contour.

