

## THE UNIVERSITY of Liverpool

## SUMMER 2006 EXAMINATIONS

```
Bachelor of Science: Year 3
Master of Mathematics: Year 3
```

MECHANICS AND RELATIVITY

TIME ALLOWED : Two Hours and a Half

## INSTRUCTIONS TO CANDIDATES

You may attempt all questions. Your best answers to FIVE questions only will be taken into account. The marks shown against the sections indicate their relative weights.

## THE UNIVERSITY of Liverpool

1. i. A rigid uniform lamina, bounded below by a straight line and above by a quarter of a circle, lies in the $x y$-plane, as shown in the figure.
Find the coordinates of the centre of mass of the lamina.
[5 marks]
The lamina is now rotated through $2 \pi$ about $x=2 a$. Show, by the use of the Theorem of Pappus-Guldin or otherwise, that the
 volume swept out is given by $\frac{(3 \pi-7) \pi}{3} a^{3}$.
[2 marks]
Hint Centre of mass: $\quad \mathbf{r}_{G}=\frac{1}{A} \int_{A} \mathbf{r} d A$
ii. A rigid uniform solid of revolution of mass $M$ is placed symmetrically about the $z$-axis. As shown in the figure, the solid is enclosed by a cylinder and bounded above by a paraboloid and below by the $x y$-plane. In terms of cylindrical polar coordinates $x=r \cos (\theta), y=$ $r \sin (\theta)$, the equation of the curved surface of the cylinder is given by $r=a$, whereas the paraboloid's curved surface is given by
 $z=r^{2} / a$, where $0 \leq z \leq a, 0 \leq \theta \leq 2 \pi$.
Identify the principal axes of inertia for this solid at the origin $O$, stating briefly your reasons.
[2 marks]
Show that the volume of the solid is $\pi a^{3} / 2$.
[3 marks]
Hence, deduce that the moment of inertia of the solid about the $z$-axis, i.e. $I_{O z}$, is $2 M a^{2} / 3$.
[3 marks]
Further, deduce that the moment of inertia of the solid about the $y$-axis is $M a^{2} / 2$.
[5 marks]
Hint Inertia matrix: $\quad \frac{M}{V} \int_{V}\left(\begin{array}{ccc}y^{2}+z^{2} & -x y & -x z \\ -x y & x^{2}+z^{2} & -y z \\ -x z & -y z & x^{2}+y^{2}\end{array}\right) d V$.

## THE UNIVERSITY of Liverpool

2. i. Define the angular velocity of a rigid uniform body in terms of an arbitrary body vector.
[2 marks]
ii. A rigid uniform circular disc is attached to a rigid uniform thin rod at its centre $C$, about which it rotates, as shown in the top figure. The rod swings freely, about its end $A$, a fixed point along the $x$-axis, remaining in the $x y$-plane at all times. The choice of the fixed coordinate axes $O x y z$, forming a right-handed frame,
 is also shown in the top figure.
$\hat{\mathbf{n}}$ is a unit vector in the $x y$-plane and $\phi$ is the angle between the $x$-axis and the plane of the disc, at time $t$. $C X, C Y, C Z$ are mutually perpendicular body axes, again forming a right-handed frame. A top-on view of the disc is shown in the bottom figure, showing $C X, C Y$ lying on the disc. As shown, $\theta$ is the angle between $\hat{\mathbf{n}}$ and $C Y$ at time $t$.


Identify the unit vector along the horizontal axis in the bottom figure. [1 mark] Hence, show that, at time $t$ the angular velocity of the disc is given by
$\boldsymbol{\omega}=\dot{\phi} \cos (\theta) \mathbf{I}-\dot{\phi} \sin (\theta) \mathbf{J}+\dot{\theta} \mathbf{K}$,
where $\mathbf{I}, \mathbf{J}$ are unit vectors along $C X, C Y$ and $\mathbf{K}$ is a unit vector along the axis of the $\operatorname{rod} C Z$.
[6 marks]

## THE UNIVERSITY of LIVERPOOL

iii. A rigid uniform disc of radius $a$ and mass $M$ is rolling down without slipping on a plane which is inclined at an angle $\alpha$ to the horizontal, as shown in the figure. $B$ is the instantaneous point of contact between the disc and the inclined plane, and $C$ is the centre of the disc, which moves with constant speed $v$ in the positive $x$-direction.


The choice of the coordinate axes, forming a right handed frame, is also shown in the figure. The motion of the disc is restricted to the $x y$-plane at all times. $\theta$ is the angle between $C y$ and $\mathbf{C P}$, were $P$ is a fixed point on the rim of the disc.

In addition to frictional, normal and gravitational forces, a thrust $T$, parallel to the positive $x$-axis, is applied at point $A$, as shown.
Show that the angular momentum of the disc about the point $B$ is
$\mathbf{L}_{B}=-\left(3 M a^{2} \dot{\theta} / 2\right) \mathbf{k}$.
[4 marks]
Hence, using the equation for rotational motion about $B$ and the no-slip condition, deduce that
$\frac{2}{3} \frac{M g \sin (\alpha)+2 T}{M a}=\ddot{\theta}$.
Finally, show that the displacement of the disc is given by
$x(t)=\frac{1}{3} \frac{M g \sin (\alpha)+2 T}{M a} t^{2}$,
given that the disc starts rolling down from rest from the origin $O$.
[4 marks]

## Hint

Theorem of Parallel Axes: $I_{\|}=I_{G}+M d^{2}$
Equations of motion: $\quad \sum_{i} \mathbf{C} \mathbf{P}_{i} \times \mathbf{F}_{i}=M\left(\mathbf{C G} \times \dot{\mathbf{v}}_{C}\right)+\dot{\mathbf{L}}_{C}$
Angular velocity: $\mathbf{v}_{P}=\mathbf{v}_{C}+\boldsymbol{\omega} \times \mathbf{C P}$

## THE UNIVERSITY of Liverpool

3. i. The figure shows a rigid uniform disc of mass $M$ and radius $a$, smoothly hinged at a point $O$, a distance $b$ away from the centre of the disc $C$. The disc rotates about this point, remaining in the $x y$-plane at all times. $O x$ is the horizontal axis, $O y$ is vertically downwards and $O x y z$ forms a fixed right-handed frame. $O X Y Z$, the mutually perpendicular body axes, also form
 a right-handed frame. At time $t, \theta$ is the angle between $O X$ and $O x$.

The disc is released at time $t=0$, from $\theta=0$ with $\dot{\theta}=\Omega$. Show, by applying the law of conservation of energy, that $\dot{\theta}=\left[\Omega^{2}+\frac{2 M g b}{I_{O z}} \sin (\theta)\right]^{1 / 2}$, where $I_{O z}$ is the moment of inertia of the disc at $O$ about the $z$-axis.
[9 marks]
Hint Kinetic energy: $\quad T_{0}=\frac{1}{2} M\left|\mathbf{v}_{0}\right|^{2}+\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{L}_{0}$
ii. The figure shows the vertical cross-section of the top of a railway carriage which has a horizontal roof with a square trapdoor of mass $M$, side length $a$ and uniform thickness, hinged smoothly to the roof at $C$
 and swings freely in the $x y$-plane. The choice of the coordinate axes is also shown in the figure.

Assuming that the carriage is moving with constant acceleration $f$ in the positive $x$-direction, use the equation of motion involving the angular momentum of the trapdoor about the point $C$ to show that:

$$
I \ddot{\theta}=-\frac{M a f}{2} \sin (\theta)-\frac{M g a}{2} \cos (\theta),
$$

where $\theta$ is the angle between the trapdoor and its closed position at time $t$, and $I$ is its moment of inertia about the horizontal axis through $C$.
[5 marks]
Now, integrate the above equation of motion with respect to time $t$ and hence show that when the trapdoor closes, the magnitude of its angular velocity will be $[M a(f+g) / I]^{1 / 2}$.
[6 marks]
Hint
Equations of motion: $\quad \sum_{i} \mathbf{C} \mathbf{P}_{i} \times \mathbf{F}_{i}=M\left(\mathbf{C G} \times \dot{\mathbf{v}}_{C}\right)+\dot{\mathbf{L}}_{C}$

## THE UNIVERSITY of LIVERPOOL

4. i. A rigid uniform lamina lies in the first quadrant of the $x y$-plane, bounded below by the circle $r=a$ and above by the cardioid $r=a+a \cos (\theta)$, as shown in the figure.

Find the moment of inertia $I_{O y}$.

ii. The figure shows a rigid uniform lamina of mass $M$, bounded by the lines $y=-2 x+3 a, y=-x / 2+$ $3 a / 2$, the $x$-axis and the $y$-axis. The lamina is clearly symmetric about the line $y=x . O x, O y$ are the body axes and the axis $O z$ is perpendicular to the $x y$-plane, which form a right handed frame.
Obtain the Cartesian equations of the principal axes of inertia at the origin $O$ for the lamina by considering its
 symmetry properties.
[2 marks]

Find the moments of inertia $I_{O x}$ and $I_{O y}$ only.
[5 marks]

It can be shown that the inertia matrix for the lamina, evaluated at $C$ relative to the body axes, is given by:

$$
\frac{M a^{2}}{12}\left(\begin{array}{ccc}
14 & -5 & 0 \\
-5 & 14 & 0 \\
0 & 0 & 28
\end{array}\right)
$$

Write down column matrices representing vectors parallel to the principal axes you found. Hence, obtain the principal moments of inertia corresponding to each principal axes.
[6 marks]
Hint You may refer to the inertia matrix given in question 1.
You may also use the formula $I_{n}=\int_{0}^{\pi / 2} \cos ^{n}(\theta) d \theta=\frac{n-1}{n} I_{n-2}$.

## THE UNIVERSITY of LIVERPOOL

5. At time $t$, the components of the angular velocity of a uniform rigid body along its principal axes of inertia $G X, G Y, G Z$ at its centre of mass $G$, are $\omega_{1}(t), \omega_{2}(t)$ and $\omega_{3}(t)$ respectively. The corresponding principal moments of inertia at $G$ are $I_{1}, I_{2}$ and $I_{3}$.
Given that the angular momentum of the body at $C$ can be represented by $\mathbf{L}_{C}=$ $I_{1} \omega_{1} \mathbf{I}+I_{2} \omega_{2} \mathbf{J}+I_{3} \omega_{3} \mathbf{K}$, where $\mathbf{I}, \mathbf{J}, \mathbf{K}$ are the unit vectors along the body axes, find the derivative of $\mathbf{L}_{C}$ with respect to time $t$, to derive the Euler form.
[5 marks]
If the principal moments of inertia at $G$ are chosen to be $I, 2 I$ and $\alpha I$ respectively, where $\alpha$ is a constant parameter and all the external forces on the body act at $G$, show that the angular momentum of the body at $G$ is constant.
[2 marks]
Hence use the Euler's form to verify that the Euler equations for the three-dimensional motion of the body can be written as

$$
\dot{\omega}_{1}=(2-\alpha) \omega_{2} \omega_{3}, \quad 2 \dot{\omega}_{2}=(\alpha-1) \omega_{3} \omega_{1}, \quad \alpha \dot{\omega}_{3}=-\omega_{1} \omega_{2}
$$

[2 marks]
Given that $\alpha=1$, show, by using the Euler's equations of motion, that

$$
\omega_{1} \dot{\omega}_{1}+\omega_{3} \dot{\omega}_{3}=0
$$

[2 marks]
By integrating this equation with respect to time show that the magnitude of the angular velocity is a constant of the motion.
[3 marks]
Now, assuming that $\alpha$ can take all values $\alpha>0$, let $\omega_{1}=\varepsilon_{1}(t), \omega_{2}=s+\varepsilon_{2}(t)$ and $\omega_{3}=\varepsilon_{3}(t)$, where $s$ is constant and $\varepsilon_{i}, i=1,2,3$ are small perturbations from equilibrium at time $t$. Deduce that the equilibrium state is stable for $\alpha<2$ and unstable for $\alpha>2$.
[6 marks]
Hint
Equations of motion: $\quad \sum_{i} \mathbf{C P}_{i} \times \mathbf{F}_{i}=M\left(\mathbf{C G} \times \dot{\mathbf{v}}_{C}\right)+\dot{\mathbf{L}}_{C}$
Euler form:
$\dot{\mathbf{L}}_{C}=\left[I_{1} \dot{\omega}_{1}-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}\right] \mathbf{I}+\left[I_{2} \dot{\omega}_{2}-\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}\right] \mathbf{J}+\left[I_{3} \dot{\omega}_{3}-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}\right] \mathbf{K}$

## THE UNIVERSITY <br> of LIVERPOOL

6. A symmetric spinning top moves under gravity about a stationary fixed pivot $O$ on its axis of symmetry. The centre of mass $G$ of the top lies on this symmetry axis at a distance $a$ from $O$.

Draw a clearly labelled figure to define the conventional Euler angles $\theta, \phi$ and $\psi$ which specify the position of the top relative to fixed space axes $O x y z$, where $O z$ is vertically upwards. What do the time derivatives of Euler angles characterise?
[3 marks]
It may be assumed that the mass and the principal moments of inertia of the top are such that its motion at time $t$ is given by the equations:

$$
\begin{aligned}
\dot{\psi}+\dot{\phi} \cos (\theta) & =s, \\
s \cos (\theta)+\lambda \dot{\phi} \sin ^{2}(\theta) & =A, \\
\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2}(\theta)+\mu a \cos (\theta) & =B,
\end{aligned}
$$

where $s \neq 0, A$ and $B$ are constants of motion, and $\lambda=I_{1} / I_{3}, \mu=2 M g / I_{1}$ are constants. Here, $I_{1}, I_{3}$ denote principal moments of inertia, $M$ mass and $g$ gravitational acceleration.

What can you say about the sign of the constants $\lambda$ and $\mu$ ?
[1 mark]
The above equations of motion allow existence of a state of dynamical equilibrium in which the top precesses indefinitely, with $O G$ rotating about $O z$ with constant angular velocity $\Omega$, and is inclined at a constant angle $\alpha$ to $O z$, where $0<\alpha<\pi$. Verify this, explaining briefly.

Now, by differentiating equations (ii) and (iii) with respect to time, eliminate the terms involving $\ddot{\phi}$, and use equation (i) to show that

$$
2 \lambda \ddot{\theta}=\left[2(\lambda-1) \cos (\theta) \dot{\phi}^{2}-2 \dot{\psi} \dot{\phi}+\lambda \mu a\right] \sin (\theta) .
$$

[7 marks]
What does $\lambda=1$ correspond to, and is it sensible to assume this? Justify your answer briefly.
[2 marks]

What is the condition on $\lambda$ for the top to precess steadily?
[2 marks]

Find two approximate speeds of precession.

## THE UNIVERSITY of Liverpool

7. a. Within the theory of special relativity, the $y-$ and $z$-axes of an inertial frame $S$ are parallel to the corresponding axes of another inertial frame $S^{\prime}$. The $x$-axes of $S$ and $S^{\prime}$ are collinear and $S^{\prime}$ moves with constant velocity $v$ relative to $S$.

Two events which take place at different spatial locations in $S$ are observed from $S^{\prime}$ to occur at the same time $t^{\prime}$ relative to $S^{\prime}$. Show that the events cannot occur simultaneously with respect to $S$.
[4 marks]
b. A spaceship $A$ leaves Earth, moving on a straight line with constant velocity $u \ll c$, where $c$ is the speed of light in vacuo. When $A$ is observed from Earth to have travelled a distance $d$, spaceship $B$ leaves Earth, moving in the same straight line as spaceship $A$ and with velocity $5 u$.
i. Use Lorentz transformation to show that the velocity of $B$ relative to $A$ is approximately given by $4 u\left(1+5 u^{2} / c^{2}\right)$.
[5 marks]
ii. Assume that Event 1 occurs when $B$ leaves Earth, with $A$ a distance $d$ from Earth, and that Event 2 occurs when $B$ catches up with $A$. Show that the time interval between these events, as observed from Earth, is $d / 4 u$, whereas this time interval, as observed from $A$ is given by
$\frac{d}{4 u} \sqrt{1-u^{2} / c^{2}}$.
[7 marks]
iii. Use the above results to show that the distance travelled by $B$ from Earth before catching up with $A$ is observed from $A$ to be $d\left(1+4 u^{2} / c^{2}\right)$.
[4 marks]
Hint
Lorentz transformation:
$\Delta x^{\prime}=\gamma(\Delta x-v \Delta t), \Delta t^{\prime}=\gamma\left(\Delta t-v \Delta x / c^{2}\right)$ where $\gamma=1 / \sqrt{1-v^{2} / c^{2}}$.

