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1. i. A rigid uniform lamina, bounded below by a straight line and
above by a quarter of a circle, lies in the xy−plane, as shown in
the figure.

Find the coordinates of the centre of mass of the lamina.
[5 marks]

The lamina is now rotated through 2π about x = 2a. Show, by
the use of the Theorem of Pappus-Guldin or otherwise, that the

volume swept out is given by
(3π − 7)π

3
a3. [2 marks]

x
O

y

a

a

Hint Centre of mass: rG =
1

A

∫

A
r dA

ii. A rigid uniform solid of revolution of mass
M is placed symmetrically about the z−axis.
As shown in the figure, the solid is enclosed by
a cylinder and bounded above by a paraboloid
and below by the xy−plane. In terms of cylin-
drical polar coordinates x = r cos(θ), y =
r sin(θ), the equation of the curved surface
of the cylinder is given by r = a, whereas
the paraboloid’s curved surface is given by
z = r2/a, where 0 ≤ z ≤ a, 0 ≤ θ ≤ 2π.

x

z

yO

a

a

Identify the principal axes of inertia for this solid at the origin O, stating briefly your
reasons. [2 marks]

Show that the volume of the solid is πa3/2. [3 marks]

Hence, deduce that the moment of inertia of the solid about the z−axis, i.e. IOz, is
2Ma2/3. [3 marks]

Further, deduce that the moment of inertia of the solid about the y−axis is Ma2/2.

[5 marks]

Hint Inertia matrix:
M

V

∫

V







y2 + z2 − xy − xz
−xy x2 + z2 − yz
−xz − yz x2 + y2





 dV.
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2. i. Define the angular velocity of a rigid uniform body in terms of an arbitrary body
vector. [2 marks]

ii. A rigid uniform circular disc is attached to a rigid
uniform thin rod at its centre C, about which it rotates,
as shown in the top figure. The rod swings freely, about
its end A, a fixed point along the x−axis, remaining
in the xy−plane at all times. The choice of the fixed
coordinate axes Oxyz, forming a right-handed frame,
is also shown in the top figure.
n̂ is a unit vector in the xy−plane and φ is the an-
gle between the x−axis and the plane of the disc, at
time t. CX,CY, CZ are mutually perpendicular body
axes, again forming a right-handed frame. A top-on
view of the disc is shown in the bottom figure, showing
CX,CY lying on the disc. As shown, θ is the angle
between n̂ and CY at time t.

x
A
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y

n̂
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X

Y

disc

C φ x

θ

Identify the unit vector along the horizontal axis in the bottom figure. [1 mark]

Hence, show that, at time t the angular velocity of the disc is given by

ω = φ̇ cos(θ) I− φ̇ sin(θ) J + θ̇K,

where I,J are unit vectors along CX,CY and K is a unit vector along the axis of the
rod CZ. [6 marks]
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iii. A rigid uniform disc of radius a and mass M is
rolling down without slipping on a plane which is in-
clined at an angle α to the horizontal, as shown in the
figure. B is the instantaneous point of contact between
the disc and the inclined plane, and C is the centre of
the disc, which moves with constant speed v in the
positive x−direction.

O

y
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x

B
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θ

v

y
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C
a

Mg
N

The choice of the coordinate axes, forming a right handed frame, is also shown in the
figure. The motion of the disc is restricted to the xy−plane at all times. θ is the
angle between Cy and CP, were P is a fixed point on the rim of the disc.

In addition to frictional, normal and gravitational forces, a thrust T , parallel to the
positive x−axis, is applied at point A, as shown.

Show that the angular momentum of the disc about the point B is

LB = −(3Ma2θ̇/2) k. [4 marks]

Hence, using the equation for rotational motion about B and the no-slip condition,
deduce that

2

3

Mg sin(α) + 2T

Ma
= θ̈. [3 marks]

Finally, show that the displacement of the disc is given by

x(t) =
1

3

Mg sin(α) + 2T

Ma
t2,

given that the disc starts rolling down from rest from the origin O.

[4 marks]

Hint

Theorem of Parallel Axes: I‖ = IG +Md2

Equations of motion:
∑

i CPi × Fi = M(CG× v̇C) + L̇C

Angular velocity: vP = vC + ω ×CP
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3. i. The figure shows a rigid uniform disc of mass M and radius a,
smoothly hinged at a point O, a distance b away from the centre
of the disc C. The disc rotates about this point, remaining
in the xy−plane at all times. Ox is the horizontal axis, Oy
is vertically downwards and Oxyz forms a fixed right-handed
frame. OXY Z, the mutually perpendicular body axes, also form
a right-handed frame. At time t, θ is the angle between OX and
Ox.

Ox

y

a
C

θ

b
X

Y

The disc is released at time t = 0, from θ = 0 with θ̇ = Ω. Show, by applying the law

of conservation of energy, that θ̇ = [Ω2 +
2Mgb

IOz

sin(θ)]1/2, where IOz is the moment

of inertia of the disc at O about the z−axis.

[9 marks]

Hint Kinetic energy: T0 =
1

2
M |v0|2 +

1

2
ω · L0

ii. The figure shows the vertical cross-section of the
top of a railway carriage which has a horizontal roof
with a square trapdoor of mass M , side length a and
uniform thickness, hinged smoothly to the roof at C
and swings freely in the xy−plane. The choice of the
coordinate axes is also shown in the figure.

O x

y

C

f
a

θ

Assuming that the carriage is moving with constant acceleration f in the positive
x−direction, use the equation of motion involving the angular momentum of the
trapdoor about the point C to show that:

Iθ̈ = −Maf

2
sin(θ)− Mga

2
cos(θ),

where θ is the angle between the trapdoor and its closed position at time t, and I is
its moment of inertia about the horizontal axis through C.

[5 marks]

Now, integrate the above equation of motion with respect to time t and hence show
that when the trapdoor closes, the magnitude of its angular velocity will be [Ma(f + g)/I]1/2.

[6 marks]

Hint

Equations of motion:
∑

i CPi × Fi = M(CG× v̇C) + L̇C
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4. i. A rigid uniform lamina lies in the first quadrant of
the xy−plane, bounded below by the circle r = a and
above by the cardioid r = a+a cos(θ), as shown in the
figure.

Find the moment of inertia IOy. [7 marks]
x

O

y

a

a

2a

ii. The figure shows a rigid uniform lamina of mass
M , bounded by the lines y = −2x + 3a, y = −x/2 +
3a/2, the x−axis and the y−axis. The lamina is clearly
symmetric about the line y = x. Ox, Oy are the body
axes and the axis Oz is perpendicular to the xy−plane,
which form a right handed frame.
Obtain the Cartesian equations of the principal axes of
inertia at the origin O for the lamina by considering its
symmetry properties.

[2 marks]
Find the moments of inertia IOx and IOy only.

[5 marks]

x

y = −2x + 3a

y = −x/2 + 3a/2

y = x

O

y

a 3a

a

3a

It can be shown that the inertia matrix for the lamina, evaluated at C relative to the
body axes, is given by:

Ma2

12







14 −5 0
−5 14 0
0 0 28





 .

Write down column matrices representing vectors parallel to the principal axes you
found. Hence, obtain the principal moments of inertia corresponding to each principal
axes. [6 marks]

Hint You may refer to the inertia matrix given in question 1.

You may also use the formula In =
∫ π/2

0

cosn(θ) dθ =
n− 1

n
In−2.
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5. At time t, the components of the angular velocity of a uniform rigid body along its
principal axes of inertia GX,GY,GZ at its centre of mass G, are ω1(t), ω2(t) and ω3(t)
respectively. The corresponding principal moments of inertia at G are I1, I2 and I3.

Given that the angular momentum of the body at C can be represented by LC =
I1ω1I + I2ω2J + I3ω3K, where I,J,K are the unit vectors along the body axes, find
the derivative of LC with respect to time t, to derive the Euler form.

[5 marks]

If the principal moments of inertia at G are chosen to be I, 2I and αI respectively,
where α is a constant parameter and all the external forces on the body act at G,
show that the angular momentum of the body at G is constant. [2 marks]

Hence use the Euler’s form to verify that the Euler equations for the three-dimensional
motion of the body can be written as

ω̇1 = (2− α)ω2ω3, 2 ω̇2 = (α− 1)ω3ω1, α ω̇3 = −ω1ω2.

[2 marks]

Given that α = 1, show, by using the Euler’s equations of motion, that

ω1ω̇1 + ω3ω̇3 = 0.

[2 marks]

By integrating this equation with respect to time show that the magnitude of the
angular velocity is a constant of the motion. [3 marks]

Now, assuming that α can take all values α > 0, let ω1 = ε1(t), ω2 = s + ε2(t)
and ω3 = ε3(t), where s is constant and εi, i = 1, 2, 3 are small perturbations from
equilibrium at time t. Deduce that the equilibrium state is stable for α < 2 and
unstable for α > 2.

[6 marks]

Hint

Equations of motion:
∑

i CPi × Fi = M(CG× v̇C) + L̇C

Euler form:

L̇C = [I1 ω̇1 − (I2 − I3)ω2ω3] I + [I2 ω̇2 − (I3 − I1)ω3ω1] J + [I3 ω̇3 − (I1 − I2)ω1ω2] K
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6. A symmetric spinning top moves under gravity about a stationary fixed pivot O on
its axis of symmetry. The centre of mass G of the top lies on this symmetry axis at
a distance a from O.

Draw a clearly labelled figure to define the conventional Euler angles θ, φ and ψ which
specify the position of the top relative to fixed space axes Oxyz, where Oz is vertically
upwards. What do the time derivatives of Euler angles characterise? [3 marks]

It may be assumed that the mass and the principal moments of inertia of the top are
such that its motion at time t is given by the equations:

ψ̇ + φ̇ cos(θ) = s, (i)

s cos(θ) + λ φ̇ sin2(θ) = A, (ii)

θ̇2 + φ̇2 sin2(θ) + µ a cos(θ) = B, (iii)

where s 6= 0, A and B are constants of motion, and λ = I1/I3, µ = 2Mg/I1 are con-
stants. Here, I1, I3 denote principal moments of inertia, M mass and g gravitational
acceleration.

What can you say about the sign of the constants λ and µ?

[1 mark]

The above equations of motion allow existence of a state of dynamical equilibrium
in which the top precesses indefinitely, with OG rotating about Oz with constant
angular velocity Ω, and is inclined at a constant angle α to Oz, where 0 < α < π.
Verify this, explaining briefly.

[2 marks]

Now, by differentiating equations (ii) and (iii) with respect to time, eliminate the
terms involving φ̈, and use equation (i) to show that

2λθ̈ = [2(λ− 1) cos(θ) φ̇2 − 2ψ̇φ̇+ λµa] sin(θ).

[7 marks]

What does λ = 1 correspond to, and is it sensible to assume this? Justify your answer
briefly.

[2 marks]

What is the condition on λ for the top to precess steadily?

[2 marks]

Find two approximate speeds of precession.

[3 marks]
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7. a. Within the theory of special relativity, the y− and z−axes of an inertial frame S
are parallel to the corresponding axes of another inertial frame S ′. The x−axes of S
and S ′ are collinear and S ′ moves with constant velocity v relative to S.

Two events which take place at different spatial locations in S are observed from
S ′ to occur at the same time t′ relative to S ′. Show that the events cannot occur
simultaneously with respect to S.

[4 marks]

b. A spaceship A leaves Earth, moving on a straight line with constant velocity
u << c, where c is the speed of light in vacuo. When A is observed from Earth to
have travelled a distance d, spaceship B leaves Earth, moving in the same straight
line as spaceship A and with velocity 5u.

i. Use Lorentz transformation to show that the velocity of B relative to A is approx-
imately given by 4u (1 + 5u2/c2).

[5 marks]

ii. Assume that Event 1 occurs when B leaves Earth, with A a distance d from
Earth, and that Event 2 occurs when B catches up with A. Show that the time
interval between these events, as observed from Earth, is d/4u, whereas this time
interval, as observed from A is given by

d

4u

√

1− u2/c2.

[7 marks]

iii. Use the above results to show that the distance travelled by B from Earth before
catching up with A is observed from A to be d (1 + 4u2/c2).

[4 marks]

Hint

Lorentz transformation:

∆x′ = γ(∆x− v∆t), ∆t′ = γ(∆t− v∆x/c2) where γ = 1/
√

1− v2/c2.
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