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1. (i) Find the general solution of the differential equation

dy

dx
= y4(x + cos x)

putting your answer in the form y = f(x).
[5 marks]

(ii) Solve the initial value problem

xy2
dy

dx
= x3 + y3; y(1) = 2.

[6 marks]

(iii) By forming an exact differential, or otherwise, solve the initial value
problem

x cos y
dy

dx
+ 2x + sin y = 0

with y(1) = 0.
[9 marks]

2. Solve the differential equation for z(x)

x2z ′′ − 5xz ′ + 9z = 25
√

x + 3 ln x

with the initial conditions z(1) = 2, z ′(1) = 0.
[20 marks]
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3. (i) Write down the Cauchy-Riemann equations connecting a function u(x, y)
to its conjugate harmonic function v(x, y).

Show that the function

u(x, y) =
6xy

(x2 + y2)2
+ 4xy

satisfies the two-dimensional Laplace’s equation if x2 + y2 6= 0.
[8 marks]

(ii) Find v(x, y), the conjugate harmonic function corresponding to u(x, y)
in part (i).

[12 marks]

4. Solve the system of equations

dx

dt
= 14x − 10y + et

dy

dt
= 5x − y + et

with the initial conditions x(0) = 1, y(0) = 2.
[20 marks]
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5. The function u(x, y) satisfies the first order partial differential equation

∂u

∂x
− ex

∂u

∂y
=

u

x

in the domain y > 0. On the boundary, y = 0, the value of u is given by

u(x, 0) = 2 .

(i) Show that the family of characteristics of this partial differential equa-
tion may be represented by

x = s + t , y = es − es+t

where s and t are parameters whose significance you should explain.
[8 marks]

(ii) Hence, or otherwise, determine the function u(x, y).
[12 marks]

6. The function g(t) has period 2π, and it has the value

g(t) = t sin t for − π < t < π.

(i) Sketch g in the range −2π < t < 2π. Is this function odd, even or
neither?

[4 marks]

(ii) Calculate the Fourier series for g(t).

[16 marks]

Hint: Remember that cos A sin B = 1

2
sin(A + B) − 1

2
sin(A − B) .
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7. The temperature U(θ, t) in a metal ring obeys the heat equation

∂U

∂t
= κ

∂2U

∂θ2
,

where the angular coordinate θ will be chosen to run from −π to π.

(i) By considering the separable solutions of the heat equation show that
the general solution to the heat equation in the ring can be written as

U(θ, t) =
a0

2
+

∞∑

n=1

e−κn
2
t [an cos nθ + bn sin nθ]

where n is an integer and an and bn are constants.
[8 marks]

(ii) Initially the temperature is 100 ◦C for − π

2
< θ < π

2
and 20 ◦C in the

rest of the ring. Find the temperature distribution at later times.
[12 marks]

PAPER CODE MATH724 Page 5 of 5 END.


