THE UNIVERSITY
 of LIVERPOOL

1. A Discrete Time Markov Chain with state space $S=\{1,2,3,4,5,6,7,8,9\}$ has the following transition matrix:

$$
\left[\begin{array}{lllllllll}
0 & .3 & 0 & 0 & .7 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & .2 & .8 & 0 & 0 \\
0 & 0 & .3 & 0 & 0 & 0 & .7 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Draw the transition diagram.
[2 marks]
(b) Identify closed communicating classes and the set T of transient states. Determine which closed communicating classes are periodic and which aperiodic. For the periodic classes determine the period.
(c) Suppose at time $n=0$ the chain is in state 3. Find

$$
\lim _{n \rightarrow \infty} P\left\{X_{n}=k\right\}
$$

for each $k \in S$.
(d) Suppose at time $n=0$ the chain is in state 2 . Find the probability mass function for X_{100}, i.e. determine $P\left\{X_{100}=i\right\}$ for $i=1,2, \ldots, 9$.
[5 marks]
(e) Write down the canonical form of the transition matrix. Show how you relabelled the states.
[4 marks]
2. A currency speculator makes a profit of more than $£ 5,000$ on a trading day with probability p. Let $n=0,1,2, \ldots$ stand for the nth trading day and X_{n} for the length of success run up to and including the nth day, where a profit of $£ 5,000$ or more is considered a success. For example, if the profits on the consecutive trading days starting from $n=0$ are (in thousands of Pounds): 4.5, 7.1, -0.2, 5.7, 6.2, 9.8, 4.9 then $X_{0}=0, X_{1}=1, X_{2}=$ $0, X_{3}=1, X_{4}=2, X_{5}=3, X_{6}=0$.
(a) Define the state space and write down the probability transition matrix for the Markov chain $\left\{X_{n}, n \geq 0\right\}$.
(b) For each $j \geq 0$ find $\lim _{n \rightarrow \infty} P\left(X_{n}=j\right)$.
(c) Suppose the trader receives a bonus of $£ A$ for every success run of length 3 or more and a bonus of $£ B(B>A)$ for every success run of length 6 or more. (The length of the success run is determined after a failure occurs, so, for example, after 7 succesful trading days followed by a failure a bonus of $£ B$ is awarded and no other bonuses are in order.) Find the bonus payment rate, i.e. the average bonus per day.
[8 marks]

THE UNIVERSITY of LIVERPOOL

3. Consider the Wright-Fisher genetic model: the population size N remains constant and the gene under consideration has two alleles, G and g. Assume that $2 N$ genes at any generation are chosen purely at random (with replacement) from those of the previous generation.
(a) Show that X_{n}, number of G genes in the n-th generation, is a Discrete Time Markov Chain. Define the state space and derive the transition probabilities. [5 marks]
(b) Identify closed communicating classes and the set T of transient states. [2 marks]
(c) For a fixed initial distribution of X_{0}, compute $E\left[X_{n}\right]$ and $E\left[X_{n}\left(2 N-X_{n}\right)\right]$.
[10 marks]
(d) Consequently, explain mathematically the genetic drift to homozygosity. [3 marks]
4. Particles arrive at a Geiger counter according to a Poisson process with rate λ. Every time a particle arrives, the counter goes "dead" for the next $\tau>0$ units of time.
(a) What is the probability that the counter is not dead at time t ? (Consider separately the cases when $t \leq \tau$ and $t>\tau$.)
[12 marks]
(b) Using a mathematical argument, show that if t is sufficiently large and τ is much smaller than $1 / \lambda$, then this probability is approximately equal to $1-\lambda \tau$. Give an intuitive explanation of this result.
[8 marks]
5. Consider a two-server system in which customers arrive according to a Poisson process with rate λ. The servers are labelled as A and B. Customers going to server A require an $\exp \left(\mu_{A}\right)$ amount of service time, those going to server $B, \exp \left(\mu_{B}\right)$ amount of service time. A customer arriving at an empty system joins server A with probability α_{A} and server B with probability $\alpha_{B}\left(\alpha_{A}+\alpha_{B}=1\right)$. Otherwise, a customer goes to the first available server. The space for waiting is infinite.

We model this system as a Continuous Time Markov Chain with state space

$$
S=\left\{0,1_{A}, 1_{B}, 2,3,4, \ldots\right\},
$$

where 0 means no customers in the system, 2 means two customers in the system, 3 means three customers in the system etc.; 1_{A} means one customer in the system served by $A, 1_{B}$ being defined analogously.
(a) For every state, describe the triggering events and find the transition rates.
(b) Write down the rate matrix and the rate diagram.
[5 marks]
(c) Write down the balance equations and state the condition under which the steadystate distribution exists.
[4 marks]
(d) Solve the equations for the case when $\mu_{A}=\mu_{B}=\lambda$ and α_{A}, α_{B} are arbitrary.
[4 marks]

THE UNIVERSITY
of LIVERPOOL
6. (a) For a standard Brownian motion $z(t)$, prove that the correlation coefficient between $z(t)$ and $z(t+s)$ is given by

$$
\rho(t, t+s)=\sqrt{\frac{t}{t+s}}, \quad t \geq 0, \quad s \geq 0, \quad t+s \neq 0 .
$$

(b) Compute $E\left[z\left(t_{1}\right) z\left(t_{2}\right) z\left(t_{3}\right)\right]$ for $t_{1}<t_{2}<t_{3}$.
[12 marks]
7. Let $X_{0}=0$ and $B(t)$ be a standard Brownian motion.
(a) Solve the stochastic differential equation

$$
d X=-\frac{27 X}{\left(3 X^{2}+1\right)^{3}} d t+\frac{3}{3 X^{2}+1} d B
$$

[15 marks]
Hint: Consider $Y=f(X)=\frac{X^{3}+X}{3}$ and apply Ito's formula.
If you obtain an equation of the type $\psi(X)=B$ for some function ψ then you can leave your solution in the form $X=\psi^{-1}(B)$.
(b) Prove that $E\left[X(t)^{3}\right]=-E[X(t)]$ for all $t \geq 0$.

