
MATH461, Winter 2003. Solutions

1. [The problem was not seen. Evaluation of ”difficult” probabil-
ities like γ were discussed in class. The law of total probability
and Bayes’ rule were studied in depth.]

(a) The next two services after deuce can result in Rod’s success with
probability p2, in Fred’s success with probability (1 − p)2 and in the
new deuce with probability 2p(1−p). (Either Rod gains the advantage
and loses it, or Fred gains the advantage and loses it.) Hence, by the
law of total probability,

γ = p2 × 1 + (1 − p)2 × 0 + 2p(1 − p) × γ

and

γ =
p2

1 − 2p(1 − p)
.

(b) Let T and N be events ”Fred trained the day before” and ”Fred
did NOT train”. Then

γ(T ) = P (Rod wins|T ) =
0.492

1 − 2 · 0.49 · 0.51
= 0.48;

γ(N) = P (Rod wins|N) =
0.512

1 − 2 · 0.51 · 0.49
= 0.52.

Hence, by the law of total probability

P (Rod wins) = P (Rod wins|T )P (T ) + P (Rod wins|N)P (N)

= 0.48 · 0.75 + 0.52 · 0.25 = 0.36 + 0.13 = 0.49.

(c) Using Bayes’ rule we have

P (T |Rod wins) =
P (Rod wins|T )P (T )

P (Rod wins)
=

0.48 · 0.75

0.49
= 0.73.

We see that 0.73 < 0.75. This is natural since the chances that Fred
had trained the day before decrease after he loses the game.

2. [Standard, but not seen. Other similar problems describing
transmission of signals were discussed in tutorials.]

(i) If s = 0 then the signal needs to be transmitted more than once if
Z ∈ [0.4, 0.6]. Let X be the number of transmissions till the message
can be decoded without errors. Now

P (X > 1|s = 0) = P (0.4 ≤ Z ≤ 0.6) =
0.2

1.2
= 1/6.

Similarly

P (X > 1|s = 1) = P (−0.6 ≤ Z ≤ −0.4) =
0.2

1.2
= 1/6
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and these two probabilities coincide.

(ii) Using the hint we obtain

E[X] =
∞
∑

k=1

kP (X = k) =
5/6

(5/6)2
=

6

5
.

Let Y be the number of messages from B to A asking for retransmissions
(per one correctly decoded signal). Then Y = X − 1 and

E[Y ] = E[X] − 1 = 6/5 − 1 = 1/5.

Thus the total expected number of messages per one correctly decoded
signal is

E[X] + E[Y ] = 7/5.

(iii) Let X be the number of coupled transmissions (per one correctly
decoded signal). Since X > 1 means that neither of two messages can
be decoded correctly,

P (X > 1) = (1/6)2 =
1

36
;

P (X = k) = (1/36)k−1(35/36), k = 1, 2, . . .

and

E[X] =
35/36

(35/36)2
=

36

35
.

If Y is, as previously, the number of messages from B to A asking for
retransmission then Y = X − 1 and E[Y ] = 1

35
.

Therefore, the expected number of messages sent by either computer
per one correctly decoded signal is

2 × 36

35
+

1

35
=

73

35
.

3. [This problem was not seen, but several similar questions con-
cerning quality of products were set for independent work at
home.]

(i) Standard estimators of the mean and of the varience are given by
formulae

µ̂ = X̄ =
1

10

10
∑

i=1

xi = 29.9;

σ̂2 =
1

9

10
∑

i=1

(xi − X̄)2 = 16.32.

If p = const then X ∼ Bin(100, p) and the estimator for p is given by

p̂ =
X̄

100
≈ 0.3.
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Since n = 100 is large and p̂ = 0.3 is moderate we can use the normal
approximation to the binomial distribution:

X ∼ N(np̂, np̂(1 − p̂)) = N(30, 21).

Therefore, the estimator of V ar(X) is 21 which is not too far from
σ̂2 = 16.32 obtained earlier. Hence all our assumptions make sense.

(ii) Now

P (X ≤ 20) = P (Z ≤ 20 − 30√
21

) = P (Z ≤ −2.18) ≈ 0.015,

P (X ≥ 37) = P (Z ≥ 37 − 30√
21

) = P (Z ≥ 1.53) ≈ 0.063,

where Z ∼ N(0, 1) is the standard normal RV.

(iii) Using observations yi we get µ̂ = 29.9, σ̂2 = 32.28, p̂ ≈ 0.3. If we
used the normal approximation to RV

Y = ”number of dead seeds in a packet of 100”

we would conclude that Y ∼ N(30, 21), and V ar(Y ) = 21 as previously
and the probabilities evaluated in (ii) do not change. At the same time
21 is far away from σ̂2 = 32.28. This is a signal that our assumptions
probably don’t hold. Moreover, we have observations y2 = 20 and y6 =
y7 = 37 which have small probabilities, if all previous hypotheses hold.
Therefore, having data {yi} it is maybe worth rejecting hypothesis that
p is constant for each packet: if the seeds in different packets come from
different years then hypothesis p = const is unlikely to hold.

4. [Not seen; maximum likelihood estimators were discussed in
class for other models as well as plotting and hypotheses test-
ing.]

(a) If CDF is F (x) = 1 − e−λx then the density function is

f(x) =
dF (x)

dx
= λe−λx, x ≥ 0.

Hence, the likelihood function is

Lx(λ) = f(x1)f(x2) . . . f(xn) = λne−λ
∑

n

i=1
xi .

The maximum maxλ≥0 Lx(λ) is attained at the same point as the max-
imum of logarithm maxλ≥0 ln Lx(λ) which can be found by differenti-
ating:

d

dλ
ln Lx(λ) =

n

λ
−

n
∑

i=1

xi = 0.

Hence,

λ̂ =
n

∑n
i=1 xi

=
n

X̄
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is the maximum likelihood estimator for λ.

(b) X̄ = 0 × 12 + 1 × 8 + 2 × 7 + 4 × 8 = 54 and

λ̂ =
35

54
= 0.648.

(c) The sample cumulative distribution is given by the formula

F̂ (xi) =
No. of observations ≤ xi

n + 1
.

In our case, n = 35; xi = 0, 1, 2, 4.

Since
− ln(1 − F (x)) = λx

it is worth plotting − ln(1 − F̂ (xi)) against xi. The results of calcula-
tions are presented in the table:

xi 0 1 2 4

F̂ (xi) 0.333 0.556 0.750 0.97

− ln(1 − F̂ (xi)) 0.40 0.81 1.39 3.51

and the graph looks like following

We can see that the points are approximately on a straight line meaning
that the data fit exponential model.

The tangent of inclination of the straight line gives the value of λ ≈ 0.8
which is not far from λ̂ = 0.648.

5. [Pareto distribution was not seen; CDF, densities and expec-
tations were discussed in depth; calculations of series and par-
allel systems were set for independent homework.]

(a) We have, since f(x) = 0, x < 0:

F (x) =
∫ x

−∞
f(x)dx = 0 if x < 0.
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For x ≥ 0,

F (x) =
∫ x

0

(

δ

θ

)

(

1 +
x

θ

)−δ−1

dx.

Put y = 1 + x
θ
, dy

dx
= 1

θ
:

F (x) =
∫ 1+x/θ

1

δ

θ

1

yδ+1
θdy = δ

[

−y−δ

δ

]1+ x

θ

1

= 1 −
(

1 +
x

θ

)−δ

.

Also,

E[X] =
∫ ∞

0
x

(

δ

θ

)

(

1 +
x

θ

)−δ−1

dx =
∫ ∞

1
θ(y − 1)

(

δ

θ

)

1

yδ+1
θdy

= δθ

{

∫ ∞

1

1

yδ
dy −

∫ ∞

1

1

yδ+1
dy

}

= δθ

{[

y−δ+1

−δ + 1

]∞

1

−
[

y−δ

−δ

]∞

1

}

= δθ
{

1

δ − 1
− 1

δ

}

=
δθ(δ − δ + 1)

(δ − 1)δ
=

θ

δ − 1
.

(b) We have

P (Y > y) = P (X1 > y ∩ X2 > y) = [1 − F (y)]2 =
(

1 +
y

θ

)−2δ

.

Hence

G(y) = P (Y ≤ y) = 1 −
(

1 +
y

θ

)−2δ

and

g(y) =
dG(y)

dy
=

(

2δ

θ

)

(

1 +
y

θ

)−2δ−1

.

Clearly Y is Pareto with parameters 2δ and θ. Thus E[Y ] = θ
2δ−1

.

According to the definition, hazard function is

h(y) =
g(y)

1 − G(y)
=

(

2δ
θ

) (

1 + y
θ

)−2δ−1

(

1 + y
θ

)−2δ =

(

2δ
θ

)

1 + y
θ

.

Since h(y) decreases, this piece is less likely to fail in the next increment
of time (y, y + ∆y) than it would be in an interval of the same length
at an earlier age. To put it defferently, the piece is improving with age.
Such models describe ”young” systems.

(c) In this case

P (W ≤ w) = P (w) = P (X3 ≤ w ∩ X4 ≤ w) = [F (w)]2
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=

[

1 −
(

1 +
w

θ

)−δ
]2

= 1 − 2
(

1 +
w

θ

)−δ

+
(

1 +
w

θ

)−2δ

, w > 0.

Hence

p(w) =
dP (w)

dw
=

2δ

θ

(

1 +
w

θ

)−δ−1

− 2δ

θ

(

1 +
w

θ

)−2δ−1

= (2δ/θ)
(

1 +
w

θ

)−δ−1
[

1 −
(

1 +
w

θ

)−δ
]

.

We have

E[W ] =
2δ

θ

∫ ∞

0
w
(

1 +
w

θ

)−δ−1

dw − 2δ

θ

∫ ∞

0
w
(

1 +
w

θ

)−2δ−1

dw

= 2E[X] − E[Y ] =
2θ

δ − 1
− θ

2δ − 1
.

(d) Units in parallel are also referred as redundant units. Redundancy is
a very important aspect of system design and reliability in that adding
redundancy is one of several methods of improving system reliability.
In a parallel configuration, the component with the highest reliability
has the biggest effect on the system’s reliability, since the most reli-
able component is the one that will most likely fail last. Lastly, as
the number of parallel components increases, the system’s reliability
increases.

6. [Random generators were discussed in class as well the Law
of Large Numbers. Properties of the Cauchy RV were not
discussed.]

(i) The period of a random generator is the smallest integer p such that
xp = x0. Good generators have large values of the period.

(ii) If X ∼ U(0, 1) then Y = F−1(X) is the new RV having the given
CDF F (y).

(iii) Firstly, CDF of Cauchy RV is given by

F (y) =
∫ y

−∞

1

π(1 + y2)
dy =

1

π
[tan−1(y) +

π

2
] =

1

2
+

tan−1(y)

π
.

Now, if Xi ∼ U(0, 1) then Yi = tan[(Xi − 0.5)π] is the sequence of iid
Cauchy RVs.

For xi : 0.2311; 0.6068 we have yi : − 1.126; 0.349.

(iv) The average values are presented below.

ȳn -1.126 -0.3885 -0.274 0.498 0.614 0.489 -2.036
ȳn -1.583 -1.426 -1.246 -1.014 -0.597 -0.479 -0.561
ȳn -0.544 -0.206 0.027 0.009 0.160 -0.119
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There is no evidence that ȳi stabilizes. Indeed, among the last ten
observations we have the values -1.014 and +0.160 corresponding to
large oscillations. This is natural since Cauchy RV has no mathematical
expectation, and according to the Law of Large Numbers, the sequence
ȳn converges to the expectation, if it exists.

(v) CDF of RV Z is given by

F (z) =
∫ z

0
e−zdz = 1 − e−z.

Now, if Xi ∼ U(0, 1) then Zi = − ln(1 − Xi) is the sequence of expo-
nential RV required.

For xi : 0.2311; 0.6068 we have zi : 0.263; 0.933. The average
values are presented below.

0.263 0.598 0.621 1.020 1.103 1.021 0.878
0.984 0.939 0.941 0.998 1.127 1.144 1.076
1.039 1.145 1.223 1.185 1.240 1.181

In this case, z̄i seems to converge to the limiting value around 1.0.
Again, this is natural since E[Z] = 1 and, according to the Law of
Large Numbers, the sequence z̄n converges, in probability, to E[Z].

7. [The problem was not seen. General Goel-Okumoto model
was presented on the lecture; all the questions are standard.]

(i) Firstly we must determine µ(t):

µ(t) = µ(0) +
∫ t

0
λ(s)ds = 0 +

∫ t

0
asb−1ds =

a

b
tb.

Hence µ(t) = 2t1/2 = 2
√

t.

Now the probability of two or more failures during the interval [1, T )
equals 1 − p, where

p = P (X(1, T ) = 0) + P (X(1, T ) = 1) = e−(2
√

T−2)[1 + 2
√

T − 2]

and we must determine the minimal T > 1 such that the last expression
is less than 0.5.

Try T = 2: p = 0.8538.

Try T = 3: p = 0.5699.

Try T = 4: p = 0.4060.
Therefore, T = 4 is the answer.

(ii)
E[X(0, 1)] = µ(1) − µ(0) = 2;

E[X(1, 2)] = µ(2) − µ(1) = 2
√

2 − 2 ≈ 0.828.
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Therefore, E[X(0, 1)] > 2E[X(1, 2)] as required. Usually, during the
debugging period, in the later time intervals, less number of failures
are found. Thus the model considered is plausible.

Let A and B ∈ {0, 1, 2} be the numbers of failures met by the first and
second specialist correspondingly. Then

P (A = 0) = exp[−µ(1) + µ(0)] = e−2 = 0.135;

P (A = 1) = e−2 × 2 = 0.271;

P (A = 2) = 1 − e−2[1 + 2] = 1 − 0.406 = 0.594,

since the last probability coincides with the probability to have more
than 1 failure in the first hour.

P (B = 0) = P (A < 2) × [−µ(2) + µ(1)] + P (A = 2)

= 0.406e−0.828 + 0.594 = 0.771,

since if A = 2 then definitely B = 0.

P (B = 1) = P (A = 0) exp[−µ(2) + µ(1)][µ(2) − µ(1)]

+P (A = 1){1 − exp[−µ(2) + µ(1)] × [µ(2) − µ(1)]}
= 0.135e−0.8280.828 + 0.271{1 − e−0.8280.828} = 0.049 + 0.173 = 0.222,

since in the second case, when A = 1, one or more failures in the second
hour imply that B = 1.

P (B = 2) = P (A = 0){1− e−0.828(1+0.828)} = 0.135× 0.201 = 0.027.

The expected profit of each specialist can be calculated in the usual
way:
A: 30P (A = 1) + 60P (A = 2) = 43.76;
B: 30P (B = 1) + 60P (B = 2) = 8.28.

(iii) It is well known for Poisson RV that

E[X(0, T )] = µ(T ) − µ(0).

If λ(t) = ce−dt then

E2 = µ(T ) = 0 +
∫ T

0
ce−dsds =

c

d
[1 − e−dT ].

Similarly, E1 = a
b
T b. Therefore, limT→∞ E1 = +∞ and limT→∞ E2 = c

d
.

Thus, the first model predicts unbounded increase of failures (on aver-
age) for increasing time horizon, while the second model predicts that
the mean total number of failures is bounded. The first model with
λ(t) = atb−1 is not adequate for large intervals [0, T ] if the specialists
working with it correct arising errors after each failure. In this situa-
tion, second model with λ(t) = ce−dt seems to be more satisfactory. At
the same time, for short time intervals [0, T ], both models make sense
and can be adequate for different types of software. Lastly, if mistakes
in programs are not corrected then the first model is definitely more
accurate.
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