THE UNIVERSITY of LIVERPOOL

(Summer 2006)
Time allowed: Three Hours.
You may attempt as many problems as you like. The best FOUR answers will be taken into account. Each question carries the same weight.

1.

[25 marks]
(i) Explain what it means for $\omega=-1 / 2+\sqrt{-3} / 2$ to be a primitive 3 rd root of unity. Find the minimal equation of ω over \mathbb{Q}.
[5 marks]
(ii) Write down formulae which relate the roots of quadratic and cubic equations to their coefficients, and explain how one can obtain them. [5 marks]
(iii) Denoting the roots by $\alpha=y+z, \beta=\omega y+\omega^{2} z, \gamma=\omega^{2} y+\omega z$, solve the cubic equation

$$
x^{3}+9 x-4=0
$$

in radicals.
[15 marks]

2.

[25 marks]
(i) Denote the roots of the quartic equation

$$
\begin{equation*}
x^{4}+a x^{3}+b x^{2}+c x+d=0 \tag{1}
\end{equation*}
$$

by $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4}. Define the elementary symmetric functions of the variables $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4}, and write down the relation between the roots and coefficients of the equation (1) using the elementary symmetric functions.
[5 marks]
(ii) Formulate the Theorem about symmetric functions of the variables α_{1}, α_{2}, α_{3} and α_{4}, and illustrate it by deriving the formula for $\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+\alpha_{4}^{2}$ in terms of the elementary symmetric functions.
[5 marks]
(iii) By considering the polynomials

$$
U=\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right), V=\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right), W=\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)
$$

of the roots, explain how to reduce the solution of the quartic equation (1) to a cubic equation.
[12 marks]
(iv) Find one of the coefficients of the cubic equation.
[3 marks]

THE UNIVERSITY of LIVERPOOL

3.

[25 marks]
(i) Factorize the polynomial $x^{5}-2 x^{3}-3 x^{2}+6$ into irreducibles over \mathbb{Q}.
[8 marks]
(ii) Prove that the polynomial $x^{5}+x^{3}+x^{2}+x+1$ is irreducible over the field \mathbb{F}_{2} with two elements.
[6 marks]
(iii) Use (ii) to construct an infinite series of irreducible polynomials of degree 5 over \mathbb{Q}. Formulate exactly the statement (by Gauss) which you have to use.
(iv) Use (ii) to construct a field with 32 elements.
[5 marks]
4.
[25 marks]
(i) Explain what is meant by saying that a point in the Euclidean plane is constructible by ruler and compass from a given set of points. [3 marks]
(ii) State without proof a necessary condition for (i) to hold in terms of the degree of a certain field extension.
[3 marks]
(iii) State without proof a sufficient and necessary condition for (i) to hold, using Galois Theory.
[4 marks]
(iv) Establish the formula

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

[Hint: Take the real part of $(\cos x+i \sin x)^{5}$.]
[5 marks]
(v) By choosing (for example) an angle θ such that $\cos 5 \theta=5 / 7$, deduce that in general an angle cannot be divided into 5 equal parts using only ruler and compass.
[10 marks]

THE UNIVERSITY of LIVERPOOL

5.

[25 marks]
(i) Define the splitting field K and the Galois group $G=G(P)$ of a polynomial $P=P(x)$ over a field k.
[4 marks]
(ii) When does the Main Galois Theorem hold for the field extension $k \subset K$ in (i)?
[4 marks]
(iii) State the Main Galois Theorem for the field extension $k \subset K$ in (i) under the condition (ii), including the formulae for the degrees of the corresponding field extensions in terms of orders of subgroups.
[7 marks]
(iv) Determine the splitting field K and the Galois group G for the polynomial $x^{3}-5$ over \mathbb{Q}. List all subgroups of G, and use the Main Galois Theorem to describe all fields between K and \mathbb{Q}.
[10 marks]
6.
[25 marks]
(i) Write down all possible cycle types of permutations in the alternating group A_{5}.
[4 marks]
(ii) Express the following permutations of the alternating group A_{5} as products of disjoint cycles:

$$
(i j k)(k l m), \quad(i j)(l m)(j k)(l m), \quad(i j k)(j k l) .
$$

[Here i, j, k, l, m are all different.]
Deduce that A_{5} can be generated by elements of order 2 only, and can also be generated by elements of order 3 only.
[5 marks]
(iii) Deduce that there does not exist a homomorphism of A_{5} onto any nontrivial cyclic group of prime order, and hence prove that A_{5} is not soluble.
[4 marks]
(iv) For each integer $m \geq 2$ prove that the polynomial

$$
P(x)=x^{5}-5 m x+5
$$

over \mathbb{Q} has Galois group which is isomorphic to S_{5}. Hence show that the equation $P(x)=0$ is not soluble in radicals. [You can use results from the course, provided that you state them clearly.]
[12 marks]

