Time allowed: 3 hours.

You may attempt as many problems as you like. The best FOUR answers will be taken into account. Each question carries the same weight. 1. [25 marks]

For the real matrix

$$J = \begin{pmatrix} E_m & 0\\ 0 & -E_m \end{pmatrix}$$

where E_m is the $m \times m$ identity matrix and 0 is the $m \times m$ zero matrix consider the set of matrices (the real orthogonal group of signature (m, m))

$$O(m,m) = \{ X \in Mat_{2m}(\mathbb{R}) \mid X^t J X = J \}$$

where X^t is the transpose matrix to X.

(a) Prove that $O(m,m) \subset GL(2m,\mathbb{R})$ is a subgroup. [5 marks]

(b) For the Cayley transform $X = (E - Y)(E + Y)^{-1}$, where $Y \in Mat_{2m}(\mathbb{R})$ and Y is near 0, show that the matrix X is in O(m, m) if and only if

$$Y^t J = -JY.$$

[10 marks]

(c) Prove that O(m, m) is a Lie group and that $\dim O(m, m) = 2m^2 - m$. [10 marks]

2.

[25 marks]

Let V be an n-dimensional vector space over \mathbb{R} .

For $0 \le m_1 \le m_2 \le m_3 \le n$, consider the flag variety

$$Fl(n; m_1, m_2, m_3) = \{W_1 \subset W_2 \subset W_3 \subset V \mid \dim W_1 = m_1, \dim W_2 = m_2, \dim W_3 = m_3\},\$$

where W_1 , W_2 and W_3 are vector subspaces of V.

(a) By considering the action of the group GL(V) on V, prove that $Fl(n; m_1, m_2, m_3)$ is a manifold. Find the dimension of $Fl(n; m_1, m_2, m_3)$. [15 marks]

(b) By considering the action of the orthogonal group O(n), prove that $Fl(n; m_1, m_2, m_3)$ is compact. [7 marks]

(c) Use (a) to find the dimension of the space

 $\{ \text{line } \subset \text{ plane } \subset 3 \text{-dimensional space } \subset 4 \text{-dimensional affine space} \}$

of affine subspaces over \mathbb{R} . [3 marks]

Paper Code MATH446 Lie groups and Lie algebras Page 2 of 5 CONTINUED

[25 marks]

(i) Give definitions of the following Lie groups and find their connected components:

(a) $GL(n, \mathbb{R})$; [12 marks]

(b) O(n) (you need only outline changes which are required in comparison with the previous case); [9 marks]

(ii) Prove that the flag variety $Fl(n; m_1, m_2, m_3)$ in Problem 2 is connected. [4 marks]

4. [25 marks] (a) Define the sum and the product of quaternions. For a quaternion q, define the conjugate quaternion \overline{q} and the modulus |q|. Give the formula for $q^{-1} = \frac{1}{q}$ if $q \neq 0$. [5 marks]

(b) Consider the Lie group $Sp(1) = \{q \in \mathbb{H} \mid |q| = 1\}$ with the operation of product of quaternions. Identify Sp(1) with the unit sphere S^3 in \mathbb{R}^4 . [2 marks]

(c) For $q \in Sp(1)$, consider the map

$$\rho(q): \operatorname{Im} \mathbb{H} \to \operatorname{Im} \mathbb{H}$$

such that $\rho(q)(x) = qx\overline{q}, x \in \text{Im }\mathbb{H}$. Here $\text{Im }\mathbb{H}$ is the set of purely imaginary quaternions bi + cj + dk. Prove that $\rho(q)$ preserves the modulus |x| and hence defines an orthogonal transformation of $\text{Im }\mathbb{H}$. Prove that it gives a homomorphism of Lie groups $\rho: Sp(1) \to O(3)$. [6 marks]

(d) Prove that the map $\rho: Sp(1) \to O(3)$ has image SO(3) and kernel $\{1, -1\}$. Hence conclude that $SO(3) = Sp(1)/\{1, -1\}$. [7 marks]

(e) By considering paths in Sp(1) and closed paths in SO(3), give arguments that the Lie groups Sp(1) and SO(3) are not isomorphic. [5 marks]

Paper Code MATH446 Lie groups and Lie algebras Page 3 of 5 CONTINUED

3.

[25 marks]

(a) Formulate the functoriality property of Lie algebras of Lie groups under homomorphisms of Lie groups. [3 marks]

(b) Find the Lie algebra \mathfrak{g} of the Lie group

$$G = \left\{ X = \begin{pmatrix} a_{11} & a_{12} & 0\\ 0 & a_{22} & 0\\ 0 & 0 & a_{33} \end{pmatrix} \in Mat_3(\mathbb{R}) \mid \det(X) = 1 \right\} \subset GL(3, \mathbb{R}).$$

[6 marks]

(c) Find the centre

$$c = \{ X \in \mathfrak{g} \mid [X, \mathfrak{g}] = 0 \}$$

of the Lie algebra \mathfrak{g} . [7 marks]

(d) What connected Lie subgroup $C_0 \subset G$ corresponds to the Lie subalgebra $c \subset \mathfrak{g}$? [4]

(e) What can you say about the centre of G? [5 marks]

6.

[25 marks]

.

(a) State the functoriality property of the exponential map for a Lie group under homomorphisms of Lie groups. [5 marks]

(b) Let $k = \mathbb{R}$, \mathbb{C} or \mathbb{H} ,

$$\mathfrak{g} = \{ X \in Mat_n(k) \mid \overline{X^t} + X = 0 \},\$$

and

$$G = \{ Y \in Mat_n(k) \mid \overline{Y^t}Y = E \}.$$

Using properties of e^X and Log(Y) for matrices, prove that G is a Lie group and \mathfrak{g} is its Lie algebra. Remark that for $k = \mathbb{R}$, \mathbb{C} and \mathbb{H} it gives the Lie groups

$$G = O(n), U(n), \text{ and } Sp(n)$$

and their Lie algebras $\mathfrak{g} = o(n)$, u(n) and sp(n) respectively. [10 marks]

(c) For any square real matrices $X, Y \in gl(n, \mathbb{R}) = Mat_n(\mathbb{R})$ prove the identity

$$e^{Y}Xe^{-Y} = \sum_{n=0}^{\infty} \frac{[Y, [Y, [Y, \dots, [Y, X]] \dots](n \text{ times})]}{n!}$$

[10 marks]

Paper Code MATH446 Lie groups and Lie algebras Page 4 of 5 CONTINUED

5.

[25 marks]

(a) Consider the torus $H \subset SO(4) = SO(4, \mathbb{R})$

$$\begin{pmatrix} \cos\phi & -\sin\phi & 0 & 0\\ \sin\phi & \cos\phi & 0 & 0\\ 0 & 0 & \cos\psi & -\sin\psi\\ 0 & 0 & \sin\psi & \cos\psi \end{pmatrix}$$

where $\phi, \psi \in \mathbb{R}$. Prove that the Lie subalgebra $\mathfrak{h} \subset \mathfrak{g} = so(4)$ of H is

$$\mathfrak{h} = \{ x_1 \sigma_1 + x_2 \sigma_2 \mid x_1, \, x_2 \in \mathbb{R} \},\$$

where

Hence, or otherwise, prove that the subalgebra \mathfrak{h} is commutative. [6 marks]

(b) Say what it means for a linear function $\alpha : \mathfrak{h} \to \mathbb{R}$ to be a *root* of $\mathfrak{h} \subset \mathfrak{g} = so(4)$, and give the definition of the root subspace $\mathfrak{g}_{\alpha} \subset \mathbb{C}\mathfrak{g}$. Prove that $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$. [5 marks]

(c) Prove that the Lie algebra $\mathbb{C}\mathfrak{g} = \mathbb{C}so(4)$ has the Cartan decomposition

$$\mathbb{C}\mathfrak{g} = \mathfrak{g}_{\alpha_1} \oplus \mathfrak{g}_{\alpha_2} \oplus \mathbb{C}\mathfrak{h} \oplus \mathfrak{g}_{-\alpha_1} \oplus \mathfrak{g}_{-\alpha_2}$$

where $\pm \alpha_1$, $\alpha_1(x_1\sigma_1 + x_2\sigma_2) = x_1 + x_2$, and $\pm \alpha_2$, $\alpha_2(x_1\sigma_1 + x_2\sigma_2) = x_1 - x_2$, are all roots of $\mathfrak{h} \subset \mathfrak{g}$ with the corresponding root subspaces in $\mathbb{C}\mathfrak{g}$

$$\mathfrak{g}_{\alpha_{1}} = \mathbb{C} \begin{pmatrix} 0 & 0 & 1 & i \\ 0 & 0 & i & -1 \\ -1 & -i & 0 & 0 \\ -i & 1 & 0 & 0 \end{pmatrix}; \qquad \mathfrak{g}_{-\alpha_{1}} = \mathbb{C} \begin{pmatrix} 0 & 0 & 1 & -i \\ 0 & 0 & -i & -1 \\ -1 & i & 0 & 0 \\ i & 1 & 0 & 0 \end{pmatrix};$$
$$\mathfrak{g}_{\alpha_{2}} = \mathbb{C} \begin{pmatrix} 0 & 0 & 1 & -i \\ 0 & 0 & i & 1 \\ -1 & -i & 0 & 0 \\ i & -1 & 0 & 0 \end{pmatrix}; \qquad g_{-\alpha_{2}} = \mathbb{C} \begin{pmatrix} 0 & 0 & 1 & i \\ 0 & 0 & -i & 1 \\ -1 & i & 0 & 0 \\ -i & -1 & 0 & 0 \end{pmatrix}.$$

[10 marks]

(d) Let $\lambda, \mu \in \{\pm \alpha_1, \pm \alpha_2\}$. For which λ, μ can you say that $[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}] = 0$? [4 marks]

Paper Code MATH446 Lie groups and Lie algebras Page 5 of 5 END

7.