Time allowed: 3 hours.

You may attempt as many problems as you like. The best FOUR answers will be taken into account. Each question carries the same weight.
1.
[25 marks]
For the real matrix

$$
J=\left(\begin{array}{cc}
E_{m} & 0 \\
0 & -E_{m}
\end{array}\right)
$$

where E_{m} is the $m \times m$ identity matrix and 0 is the $m \times m$ zero matrix consider the set of matrices (the real orthogonal group of signature (m, m))

$$
O(m, m)=\left\{X \in M a t_{2 m}(\mathbb{R}) \mid X^{t} J X=J\right\}
$$

where X^{t} is the transpose matrix to X.
(a) Prove that $O(m, m) \subset G L(2 m, \mathbb{R})$ is a subgroup. [5 marks]
(b) For the Cayley transform $X=(E-Y)(E+Y)^{-1}$, where $Y \in \operatorname{Mat}_{2 m}(\mathbb{R})$ and Y is near 0 , show that the matrix X is in $O(m, m)$ if and only if

$$
Y^{t} J=-J Y
$$

[10 marks]
(c) Prove that $O(m, m)$ is a Lie group and that $\operatorname{dim} O(m, m)=2 m^{2}-m$.
[10 marks]
2.
[25 marks]
Let V be an n-dimensional vector space over \mathbb{R}.
For $0 \leq m_{1} \leq m_{2} \leq m_{3} \leq n$, consider the flag variety

$$
\begin{aligned}
& F l\left(n ; m_{1}, m_{2}, m_{3}\right)= \\
& \left\{W_{1} \subset W_{2} \subset W_{3} \subset V \mid \operatorname{dim} W_{1}=m_{1}, \operatorname{dim} W_{2}=m_{2}, \operatorname{dim} W_{3}=m_{3}\right\}
\end{aligned}
$$

where W_{1}, W_{2} and W_{3} are vector subspaces of V.
(a) By considering the action of the group $G L(V)$ on V, prove that $F l\left(n ; m_{1}, m_{2}, m_{3}\right)$ is a manifold. Find the dimension of $F l\left(n ; m_{1}, m_{2}, m_{3}\right)$. [15 marks]
(b) By considering the action of the orthogonal group $O(n)$, prove that $F l\left(n ; m_{1}, m_{2}, m_{3}\right)$ is compact. [7 marks]
(c) Use (a) to find the dimension of the space
\{line \subset plane \subset 3-dimensional space \subset 4-dimensional affine space $\}$
of affine subspaces over \mathbb{R}. [3 marks]
Paper Code MATH446 Lie groups and Lie algebras Page 2 of 5 CONTINUED

3.

[25 marks]
(i) Give definitions of the following Lie groups and find their connected components:
(a) $G L(n, \mathbb{R}) ;$ [12 marks]
(b) $O(n)$ (you need only outline changes which are required in comparison with the previous case); [9 marks]
(ii) Prove that the flag variety $F l\left(n ; m_{1}, m_{2}, m_{3}\right)$ in Problem 2 is connected. [4 marks]
4.
[25 marks]
(a) Define the sum and the product of quaternions. For a quaternion q, define the conjugate quaternion \bar{q} and the modulus $|q|$. Give the formula for $q^{-1}=\frac{1}{q}$ if $q \neq 0$. [5 marks]
(b) Consider the Lie group $S p(1)=\{q \in \mathbb{H}| | q \mid=1\}$ with the operation of product of quaternions. Identify $S p(1)$ with the unit sphere S^{3} in \mathbb{R}^{4}. [2 marks]
(c) For $q \in S p(1)$, consider the map

$$
\rho(q): \operatorname{Im} \mathbb{H} \rightarrow \operatorname{Im} \mathbb{H}
$$

such that $\rho(q)(x)=q x \bar{q}, x \in \operatorname{Im} \mathbb{H}$. Here $\operatorname{Im} \mathbb{H}$ is the set of purely imaginary quaternions $b i+c j+d k$. Prove that $\rho(q)$ preserves the modulus $|x|$ and hence defines an orthogonal transformation of $\operatorname{Im} \mathbb{H}$. Prove that it gives a homomorphism of Lie groups $\rho: S p(1) \rightarrow O(3)$. [6 marks]
(d) Prove that the map $\rho: S p(1) \rightarrow O(3)$ has image $S O(3)$ and kernel $\{1,-1\}$. Hence conclude that $S O(3)=S p(1) /\{1,-1\}$. [7 marks]
(e) By considering paths in $S p(1)$ and closed paths in $S O(3)$, give arguments that the Lie groups $S p(1)$ and $S O(3)$ are not isomorphic. [5 marks]

Paper Code MATH446 Lie groups and Lie algebras Page 3 of 5 CONTINUED

5.

[25 marks]
(a) Formulate the functoriality property of Lie algebras of Lie groups under homomorphisms of Lie groups. [3 marks]
(b) Find the Lie algebra \mathfrak{g} of the Lie group

$$
G=\left\{\left.X=\left(\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right) \in \operatorname{Mat}_{3}(\mathbb{R}) \right\rvert\, \operatorname{det}(X)=1\right\} \subset G L(3, \mathbb{R})
$$

[6 marks]
(c) Find the centre

$$
c=\{X \in \mathfrak{g} \mid[X, \mathfrak{g}]=0\}
$$

of the Lie algebra \mathfrak{g}. [7 marks]
(d) What connected Lie subgroup $C_{0} \subset G$ corresponds to the Lie subalgebra $c \subset \mathfrak{g}$? [4]
(e) What can you say about the centre of G ? [5 marks]
6.
[25 marks]
(a) State the functoriality property of the exponential map for a Lie group under homomorphisms of Lie groups. [5 marks]
(b) Let $k=\mathbb{R}, \mathbb{C}$ or \mathbb{H},

$$
\mathfrak{g}=\left\{X \in M a t_{n}(k) \mid \overline{X^{t}}+X=0\right\}
$$

and

$$
G=\left\{Y \in M a t_{n}(k) \mid \overline{Y^{t}} Y=E\right\}
$$

Using properties of e^{X} and $\log (Y)$ for matrices, prove that G is a Lie group and \mathfrak{g} is its Lie algebra. Remark that for $k=\mathbb{R}, \mathbb{C}$ and \mathbb{H} it gives the Lie groups

$$
G=O(n), U(n), \text { and } S p(n)
$$

and their Lie algebras $\mathfrak{g}=o(n), u(n)$ and $s p(n)$ respectively. [10 marks]
(c) For any square real matrices $X, Y \in g l(n, \mathbb{R})=\operatorname{Mat}_{n}(\mathbb{R})$ prove the identity

$$
e^{Y} X e^{-Y}=\sum_{n=0}^{\infty} \frac{[Y,[Y,[Y, \ldots,[Y, X]] \ldots](n \text { times })}{n!}
$$

[10 marks]
Paper Code MATH446 Lie groups and Lie algebras Page 4 of 5 CONTINUED
7.
[25 marks]
(a) Consider the torus $H \subset S O(4)=S O(4, \mathbb{R})$

$$
\left(\begin{array}{cccc}
\cos \phi & -\sin \phi & 0 & 0 \\
\sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & \cos \psi & -\sin \psi \\
0 & 0 & \sin \psi & \cos \psi
\end{array}\right)
$$

where $\phi, \psi \in \mathbb{R}$. Prove that the Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}=s o(4)$ of H is

$$
\mathfrak{h}=\left\{x_{1} \sigma_{1}+x_{2} \sigma_{2} \mid x_{1}, x_{2} \in \mathbb{R}\right\}
$$

where

$$
\sigma_{1}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) .
$$

Hence, or otherwise, prove that the subalgebra \mathfrak{h} is commutative. [6 marks]
(b) Say what it means for a linear function $\alpha: \mathfrak{h} \rightarrow \mathbb{R}$ to be a root of $\mathfrak{h} \subset$ $\mathfrak{g}=s o(4)$, and give the definition of the root subspace $\mathfrak{g}_{\alpha} \subset \mathbb{C} \mathfrak{g}$. Prove that $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}$. [5 marks]
(c) Prove that the Lie algebra $\mathbb{C g}=\mathbb{C} s o(4)$ has the Cartan decomposition

$$
\mathbb{C} \mathfrak{g}=\mathfrak{g}_{\alpha_{1}} \oplus \mathfrak{g}_{\alpha_{2}} \oplus \mathbb{C h} \oplus \mathfrak{g}_{-\alpha_{1}} \oplus \mathfrak{g}_{-\alpha_{2}}
$$

where $\pm \alpha_{1}, \alpha_{1}\left(x_{1} \sigma_{1}+x_{2} \sigma_{2}\right)=x_{1}+x_{2}$, and $\pm \alpha_{2}, \alpha_{2}\left(x_{1} \sigma_{1}+x_{2} \sigma_{2}\right)=x_{1}-x_{2}$, are all roots of $\mathfrak{h} \subset \mathfrak{g}$ with the corresponding root subspaces in $\mathbb{C g}$

$$
\begin{aligned}
& \mathfrak{g}_{\alpha_{1}}=\mathbb{C}\left(\begin{array}{cccc}
0 & 0 & 1 & i \\
0 & 0 & i & -1 \\
-1 & -i & 0 & 0 \\
-i & 1 & 0 & 0
\end{array}\right) ; \quad \mathfrak{g}_{-\alpha_{1}}=\mathbb{C}\left(\begin{array}{cccc}
0 & 0 & 1 & -i \\
0 & 0 & -i & -1 \\
-1 & i & 0 & 0 \\
i & 1 & 0 & 0
\end{array}\right) ; \\
& \mathfrak{g}_{\alpha_{2}}=\mathbb{C}\left(\begin{array}{cccc}
0 & 0 & 1 & -i \\
0 & 0 & i & 1 \\
-1 & -i & 0 & 0 \\
i & -1 & 0 & 0
\end{array}\right) ; \quad g_{-\alpha_{2}}=\mathbb{C}\left(\begin{array}{cccc}
0 & 0 & 1 & i \\
0 & 0 & -i & 1 \\
-1 & i & 0 & 0 \\
-i & -1 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

[10 marks]
(d) Let $\lambda, \mu \in\left\{ \pm \alpha_{1}, \pm \alpha_{2}\right\}$. For which λ, μ can you say that $\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}\right]=0$? [4 marks]

Paper Code MATH446 Lie groups and Lie algebras

