Time allowed: 3 hours.

You may attempt as many problems as you like. The best FOUR answers will be taken into account. Each question carries the same weight. 1. [25 marks]

For the real matrix

$$J = \begin{pmatrix} 0 & E_m \\ -E_m & 0 \end{pmatrix}$$

where E_m is $m \times m$ identity matrix and 0 is $m \times m$ zero matrix consider the set of matrices (the real symplectic group)

$$Sp(m,\mathbb{R}) = \{ X \in Mat_{2m}(\mathbb{R}) \mid X^t J X = J \}$$

where X^t is the transpose matrix to X.

(a) Prove that $Sp(m, \mathbb{R}) \subset GL(2m, \mathbb{R})$ is a subgroup. [5 marks]

(b) For the Cayley transform $X = (E - Y)(E + Y)^{-1}$, where $Y \in Mat_{2m}(\mathbb{R})$ and Y is near 0, show that the matrix $X \in Sp(m, \mathbb{R})$, if and only if

$$Y^t J = -JY.$$

(c) Prove that $Sp(m, \mathbb{R})$ is a Lie group and that dim $Sp(m, \mathbb{R}) = 2m^2 + m$. [10 marks]

2.

[25 marks]

Let V be an n-dimensional vector space over \mathbb{C} . For $0 \leq m_1 \leq m_2 \leq n$, consider the Flag variety

$$Fl(n; m_1, m_2) = \{ W_1 \subset W_2 \subset V \mid \dim W_1 = m_1, \dim W_2 = m_2 \},\$$

where W_1 and W_2 are vector subspaces of V.

(a) By considering the action of the group GL(V) on V, prove that $Fl(n; m_1, m_2)$ is a manifold. Find the dimension of $Fl(n; m_1, m_2)$. [15 marks]

(b) By considering the action of the unitary group U(n), prove that $Fl(n; m_1, m_2)$ is compact. [7 marks]

(c) Use (a) to find the dimension of the space

{line \subset plane \subset 3-dimensional affine space over \mathbb{C} }.

[3 marks]

Paper Code MATH446

Page 2 of 5 CONTINUED

[25 marks]

(i) Give definitions of the following Lie groups, and either prove that they are connected or find their connected components:

(a) O(n), SO(n); [12 marks]

(b) SU(n), U(n). [9 marks]

(ii) Prove that the flag variety $Fl(n; m_1, m_2)$ in the Problem 2 is connected. [4 marks]

4.

[25 marks]

(a) Define the sum and the product of quaternions. For a quaternion q, define the conjugate quaternion \overline{q} and the modulus |q|. Give the formula for $q^{-1} = \frac{1}{q}$ if $q \neq 0$. [5 marks]

(b) Consider the Lie group $Sp(1) = \{q \in \mathbb{H} \mid |q| = 1\}$ with the operation of product of quaternions. Identify Sp(1) with the unit sphere S^3 in \mathbb{R}^4 . [2 marks]

(c) For $(p,q) \in Sp(1) \times Sp(1)$, consider the map

$$r(p,q):\mathbb{H}\to\mathbb{H}$$

such that $\tau(p,q)(x) = pxq^{-1}$, $x \in \mathbb{H}$. Prove that $\tau(p,q)$ preserves the modulus |x| and hence defines an orthogonal transformation of \mathbb{H} . Prove that it gives a homomorphism of Lie groups $\tau : Sp(1) \times Sp(1) \to O(4)$. [6 marks]

(d) Prove that the map $\tau : Sp(1) \times Sp(1) \rightarrow O(4)$ has image SO(4) and the kernel which is the group of order two $\{(1,1)(-1,-1)\}$. Hence conclude that $SO(4) = (Sp(1) \times Sp(1)) / \{(1,1), (-1,-1)\}$. [7 marks]

(e) By considering paths in $Sp(1) \times Sp(1)$ and closed paths in SO(4), give arguments that the Lie groups $Sp(1) \times Sp(1)$ and SO(4) are locally isomorphic, but not isomorphic. [5 marks]

5.

[25 marks]

(a) Formulate the functoriality property of Lie algebras of Lie groups under homomorphisms of Lie groups. [4 marks]

(b) Find the Lie algebra \mathfrak{g} of the Lie group

$$T = \{ X = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \mid \det(X) \neq 0 \} \subset GL(2, \mathbb{R}).$$

of upper triangular 2×2 real matrices. [8 marks]

(c) Find the Lie algebra $s\mathfrak{g} \subset \mathfrak{g}$ of its special subgroup

$$ST = \{X \in T \mid \det(X) = 1\}.$$
 [5 marks]

(d) Find the centre

$$c = \{ X \in \mathfrak{g} \mid [X, \mathfrak{g}] = 0 \}$$

of the Lie algebra \mathfrak{g} . [4 marks]

(e) What connected Lie subgroup in T corresponds to the Lie subalgebra? What can you say about this Lie subgroup? [4 marks]

Paper Code MATH446

```
Page 3 of 5 CONTINUED
```

3.

[25 marks]

(a) State the functoriality property of the exponential map for a Lie group under homomorphisms of Lie groups. [5 marks]

(b) Let $k = \mathbb{R}$, \mathbb{C} or \mathbb{H} ,

$$\mathfrak{g} = \{ X \in Mat_n(k) \mid \overline{X^t} + X = 0 \},\$$

and

$$G = \{ Y \in Mat_n(k) \mid \overline{Y^t}Y = E \}.$$

Using properties of e^X and Log(Y) for matrices, prove that G is a Lie group and \mathfrak{g} is its Lie algebra. Remark that for $k = \mathbb{R}$, \mathbb{C} and \mathbb{H} it gives the Lie groups

$$G = O(n), U(n), \text{ and } Sp(n)$$

and their Lie algebras $\mathfrak{g} = o(n)$, u(n) and sp(n) respectively. [10 marks]

(c) For a square real matrix A, prove the identity

$$\det\left(e^{A}\right) = e^{\operatorname{tr}\left(A\right)}.$$

[10 marks]

7.

[25 marks]

(a) Prove that the first two (up to order 2) terms of the Campbell–Baker–Hausdorff series:

$$Log(Exp(X)Exp(Y)) = (X + Y) + \frac{1}{2}[X, Y] + \left(\frac{1}{12}[X, [X, Y]] + \frac{1}{12}[Y, [Y, X]]\right) + \frac{1}{24}[Y, [X, [Y, X]]] + \cdots$$

are as shown where the matrices $X, Y \in gl(n, \mathbb{R}) = Mat_n(\mathbb{R})$ are small (i.e. they are near the zero matrix). [11 marks]

(b) Formulate the general statement about the Campbell–Baker–Hausdorff series. [3 marks]

(c) Formulate the general statement about existence of a local linear Lie subgroup Exp(U) of $GL(n,\mathbb{R})$ for a small neighbourhood U of 0 in a linear subspace $\mathfrak{h} \subset gl(n,\mathbb{R})$. Sketch the proof of the statement. [6 marks]

(d) Formulate the general statement about local isomorphism of two linear Lie subgroups $G_1 \subset GL(n, \mathbb{R})$ and $G_2 \subset GL(m, \mathbb{R})$ with isomorphic Lie algebras (here n and m can be different). Sketch the proof of the statement. [5 marks]

Paper Code MATH446

Page 4 of 5 CONTINUED

6.

[25 marks]

(a) Consider the torus $H \subset SO(4) = SO(4, \mathbb{R})$

$$\begin{pmatrix} \cos\phi & -\sin\phi & 0 & 0\\ \sin\phi & \cos\phi & 0 & 0\\ 0 & 0 & \cos\psi & -\sin\psi\\ 0 & 0 & \sin\psi & \cos\psi \end{pmatrix}$$

where $\phi, \psi \in \mathbb{R}$. Prove that the Lie subalgebra $\mathfrak{h} \subset \mathfrak{g} = so(4)$ of H is

$$\mathfrak{h} = \{ x_1 \sigma_1 + x_2 \sigma_2 \mid x_1, \, x_2 \in \mathbb{R} \},\$$

where

Deduce, or prove otherwise, that the subalgebra \mathfrak{h} is commutative. [6 marks]

(b) Say what it means for a linear function $\alpha : \mathfrak{h} \to \mathbb{R}$ to be a *root* of $\mathfrak{h} \subset \mathfrak{g} = so(4)$, and give the definition of the root subspace $\mathfrak{g}_{\alpha} \subset \mathbb{C}\mathfrak{g}$. Prove that $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$. [5 marks]

(c) Prove that the Lie algebra $\mathbb{C}\mathfrak{g} = \mathbb{C}so(4)$ has the Cartan decomposition

$$\mathbb{C}\mathfrak{g} = \mathfrak{g}_{\alpha_1} \oplus \mathfrak{g}_{\alpha_2} \oplus \mathbb{C}\mathfrak{h} \oplus \mathfrak{g}_{-\alpha_1} \oplus \mathfrak{g}_{-\alpha_2}$$

where $\pm \alpha_1$, $\alpha_1(x_1\sigma_1 + x_2\sigma_2) = x_1 + x_2$, and $\pm \alpha_2$, $\alpha_2(x_1\sigma_1 + x_2\sigma_2) = x_1 - x_2$, are all roots of $\mathfrak{h} \subset \mathfrak{g}$ with the corresponding root subspaces in $\mathbb{C}\mathfrak{g}$

$$\mathfrak{g}_{\alpha_{1}} = \mathbb{C} \begin{pmatrix} 0 & 0 & 1 & i \\ 0 & 0 & i & -1 \\ -1 & -i & 0 & 0 \\ -i & 1 & 0 & 0 \end{pmatrix}; \qquad \mathfrak{g}_{-\alpha_{1}} = \mathbb{C} \begin{pmatrix} 0 & 0 & 1 & -i \\ 0 & 0 & -i & -1 \\ -1 & i & 0 & 0 \\ i & 1 & 0 & 0 \end{pmatrix};;$$
$$\mathfrak{g}_{\alpha_{2}} = \mathbb{C} \begin{pmatrix} 0 & 0 & 1 & -i \\ 0 & 0 & i & 1 \\ -1 & -i & 0 & 0 \\ i & -1 & 0 & 0 \end{pmatrix}; \qquad g_{-\alpha_{2}} = \mathbb{C} \begin{pmatrix} 0 & 0 & 1 & i \\ 0 & 0 & -i & 1 \\ -1 & i & 0 & 0 \\ -i & -1 & 0 & 0 \end{pmatrix}.$$

[10 marks]

(d) Let $\lambda, \mu \in \{\pm \alpha_1, \pm \alpha_2\}$. For which λ, μ can you say that $[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}] = 0$? [4 marks]

Paper Code MATH446

Page 5 of 5 END

8.