1. (a) Let $\gamma$ be a regular plane curve with parameter $t$ and arc-length $s(t)$. Explain briefly the meaning of the standard formulae

$$
\gamma^{\prime}=T s^{\prime}, \quad T^{\prime}=\kappa N s^{\prime} \quad\left(\text { where }{ }^{\prime} \text { means } d / d t\right)
$$

and deduce that $N^{\prime}=-\kappa T s^{\prime}$. Writing $\gamma(t)=(X(t), Y(t))$ derive the formula $\kappa=\left(X^{\prime} Y^{\prime \prime}-X^{\prime \prime} Y^{\prime}\right) /\left(X^{\prime 2}+Y^{\prime 2}\right)^{3 / 2}$ for the curvature $\kappa(t)$.

Now let $\gamma(t)=\left(t^{2}, t^{5}\right)$. Show that $\gamma$ is regular for $t \neq 0$ and that, for $t \neq 0$,

$$
\kappa(t)=\frac{30|t|}{\left(4+25 t^{6}\right)^{3 / 2}} .
$$

Indicate by a sketch of the curve why $\kappa(t)$ is always $>0$ for $t \neq 0$. [15 marks]
(b) Explain briefly the connexion between height functions on a plane curve and contact with lines.

Write down the height function corresponding to the unit vector $(a, b)$ for the curve $\gamma(t)=\left(t^{2}, t^{4}+t^{5}\right)$. Show that $\gamma$ is regular for $t \neq 0$ and find the value or values of $t \neq 0$ for which $\gamma$ has an ordinary inflexion.
[10 marks]
2. Let $\alpha$ be a unit speed space curve whose curvature is never zero. Write down the standard formulae for $T^{\prime}, N^{\prime}, B^{\prime}$ where $T$ is the unit tangent, $N$ the unit principal normal and $B$ the unit binormal of $\alpha$, and ' denotes differentiation with respect to arclength $s$.

Explain briefly the connexion between distance-squared functions on a space curve and contact with spheres. Let $\alpha$ be a unit speed space curve whose curvature is never zero and let $\alpha(s)$ be a point at which the torsion $\tau(s)$ is nonzero. Show that there is a unique sphere having at least 4-point contact with $\alpha$ at $\alpha(s)$, and its centre is the point

$$
u=\alpha(s)+\frac{1}{\kappa(s)} N(s)-\frac{\kappa^{\prime}(s)}{\kappa(s)^{2} \tau(s)} B(s)
$$

What is the corresponding result at points $\alpha(s)$ where $\tau(s)=0$ ? [25 marks]
3. (a) State the meaning of the phrase ' $f: \mathbf{R}, t_{0} \rightarrow \mathbf{R}$ has an $A_{k}$ singularity at $t_{0}{ }^{\prime}$.

Find values of the constants $a$ and $b$ such that

$$
f(t)=\frac{1}{5} t^{5}+\frac{1}{4} a t^{4}+\frac{1}{3} b t^{3}
$$

has $A_{1}$ singularities at $t=1$ and $t=2$.
What singularity $A_{k}$ does $f$ then have at $t=0$ ? Find an explicit local diffeomorphism $h: \mathbf{R}, 0 \rightarrow \mathbf{R}, 0$ such that $f(t)= \pm(h(t))^{k+1}$. State briefly why your $h$ is a local diffeomorphism.
[12 marks]
(b) Let $\phi: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be given by $\phi(x, y)=(w, z)=\left(x, x^{2} y+y^{2}\right)$. Write down the Jacobian matrix $J$ of $\phi$ and sketch in the $(x, y)$ plane the critical set $\Sigma$ of $\phi$, where $\operatorname{det}(J)=0$. Sketch also the set of points $\phi(x, y)$ for $(x, y) \in \Sigma$.

Find all the points $(x, y)$ for which $\phi(x, y)=(1,6)$. What does the inverse function theorem say about local inverses of $\phi$ for $(w, z)$ close to $(1,6)$ ? For each such local inverse, find $\partial y / \partial w$ and $\partial y / \partial z$ at $(w, z)=(1,6)$.
4. (a) Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be defined by

$$
f(x, y)=x^{2}+2 x y^{2}-y^{2}+y^{3}+y^{4} .
$$

Show that the only critical points of $f$ are $(0,0)$ and $\left(-\frac{4}{9}, \frac{2}{3}\right)$. Deduce that $f^{-1}(0)-\{(0,0)\}$ is, in a neighbourhood of any of its points, a parametrized 1-manifold, stating carefully any general result you use. Parametrizing by $x$ or $y$ as appropriate, find the curvature at $(-1,1)$.
(b) Let $\alpha: I \rightarrow \mathbf{R}^{2}$ be a unit speed plane curve, with arclength parameter $t$. Write $\alpha(t)=(X(t), Y(t))$. Define a map

$$
F: I \times \mathbf{R}^{2} \rightarrow \mathbf{R} \text { by } F(t, x, y)=((x, y)-\alpha(t)) \cdot T(t),
$$

where $T$ as usual is the unit tangent $\left(X^{\prime}(t), Y^{\prime}(t)\right)$ to $\alpha$. Define

$$
G: I \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \text { by } G(t, x, y)=\left(F(t, x, y), \frac{\partial F}{\partial t}(t, x, y)\right)
$$

Use the implicit function theorem to show that $G^{-1}(0,0)$ is a parametrized 1manifold in a neighbourhood of any of its points, and that $t$ can always be used as a local parameter.
[12 marks]
5. Throughout this question, $\gamma: I \rightarrow \mathbf{R}^{2}$ is a regular plane curve which does not pass through the origin $(0,0)$. The curvature of $\gamma$ will be denoted by $\kappa$. The 'orthotomic' of $\gamma$ relative to the origin is the curve $\delta(t)=2(\gamma(t) \cdot N(t)) N(t)$, where $N$ is as usual the unit normal to $\gamma$.
(i) In this part, you may assume

- $\gamma$ is unit speed;
- $\gamma(t) . N(t)$ is never zero. (Geometrically this means that no tangent to $\gamma$ passes through the origin; you need not verify this.)

Show that the equation of the circle through $(0,0)$, centre $\gamma(t)$, is

$$
(\mathbf{x}-2 \gamma(t)) \cdot \mathbf{x}=0
$$

Show that the envelope of these circles consists of the origin together with the orthotomic of $\gamma$ relative to the origin.

Show that the envelope is regular at points $\mathbf{x} \neq(0,0)$ where $\mathbf{x}=\delta(t)$ and $\kappa(t) \neq 0$.

Use the versal unfolding method to show that there is an ordinary cusp on the envelope at $\mathbf{x}=\delta(t)$ provided $\kappa(t)=0, \kappa^{\prime}(t) \neq 0$.
[16 marks]
(ii) Let $\gamma(t)=(t-1, f(t))$, where $f$ is smooth, $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(0) \neq 0$. Find an explicit parametrization for the orthotomic $\delta(t)=(X(t), Y(t))$, say, in terms of $f$ and $f^{\prime}$.

Show that $\delta(0)=(0,0)$ and that the tangent to $\gamma$ at $\gamma(0)$ passes through the origin.

Show further that $Y^{\prime}(0) \neq 0$, and deduce that $\delta$ is regular at $t=0$. [9 marks]
6. (a) In each of the following cases, the formula $F$ gives an unfolding of the function $f(t)=F(t, \mathbf{0})$ at $t=0$. Determine the $A_{k}$ type of the function $f$ at $t=0$ and whether the unfolding is versal.

$$
\begin{aligned}
F(t, x, y) & =t^{3}+x y t^{2}+(2 x+3 y) t+y \\
F(t, x, y, z) & =t^{4}+x t^{3}+x y t^{2}+(2 x+z) t+y
\end{aligned}
$$

[8 marks]
(b) Let $\alpha$ and $\beta$ be unit speed plane curves (arclength parameters $s$ and $t$ respectively). We write $T_{\alpha}, N_{\alpha}$ for the unit tangent and normal to $\alpha$, and similarly for $\beta$. Suppose

- $\alpha(s)$ never equals $\beta(t)$ (i.e. the curves are disjoint);
- $T_{\alpha}(s)$ never equals $T_{\beta}(t)$.

Show that $T_{\alpha} \cdot N_{\beta}+T_{\beta} \cdot N_{\alpha}=0$. [Hint: it might help to remember that if $T=(a, b)$ then $N=(-b, a)$.] Deduce that $T_{\alpha}-T_{\beta}$ is perpendicular to $N_{\alpha}-N_{\beta}$.

Consider the map $F(s, t)=(\alpha(s)-\beta(t)) \cdot\left(T_{\alpha}(s)-T_{\beta}(t)\right)$. Show that $F(s, t)=0$ if and only if there exists a real number $r \neq 0$ such that $\alpha(s)+r N_{\alpha}(s)=$ $\beta(t)+r N_{\beta}(t)$.

Show also that 0 is a regular value of $F$ unless both the radii of curvature of $\alpha$ at $\alpha(s)$ and $\beta$ at $\beta(t)$ equal $r$.
[17 marks]
7. Let $\alpha: I \rightarrow \mathbf{R}^{3}$ be a unit speed space curve (arclength parameter $t$, say) with $\kappa(t)$ never zero and also the torsion $\tau(t)$ never zero.

Define $F: I \times \mathbf{R}^{3} \rightarrow \mathbf{R}$ by

$$
F(t, \mathbf{x})=(\mathbf{x}-\alpha(t)) \cdot B(t)
$$

where $B$ is as usual the binormal vector. For a fixed $t$, what is the set of points $F(t, \mathbf{x})=0$ ?

Show that the envelope of the family $F$ is precisely the points $\mathbf{x}=\alpha(t)+\lambda T(t)$ for $\lambda \in \mathbf{R}$, where $T$ is as usual the unit tangent vector to $\alpha$.

Find the points of regression on the envelope and show (using $\tau(t) \neq 0$ ) that these are always of type $A_{2}$ and that they are always versally unfolded by the family $F$.

Now let $\alpha(t)=\frac{1}{\sqrt{ } 2}(\cos t, \sin t, t)$. Show that $\alpha$ satisfies the conditions $\kappa(t) \neq 0$ and $\tau(t) \neq 0$ and use the above result to determine the local structure of the envelope of $F$ at all points of regression.
[25 marks]

