THE UNIVERSITY of LIVERPOOL

1. (a) Define the distance-squared function f from the point (a, b) to the plane curve $\gamma: I \rightarrow \mathbb{R}^{2}$. Explain briefly the connexion between the number of derivatives of f which vanish at t and the contact of a circle, centre (a, b), with γ at $\gamma(t)$.
[4 marks]
(b) Define the height function h in the direction $(a, b) \neq(0,0)$ for a plane curve γ. Explain briefly the connexion between the height function and the inflexions or higher inflexions of γ.
[4 marks]
(c) Now let λ be a nonzero real number and let $\gamma(t)=\left(t^{2}, \lambda t+t^{4}\right)$. Show that γ is a regular curve. Write down the corresponding distance-squared function and show that there is a unique circle having exactly 4 -point contact with γ at the origin; in particular, find the centre of this circle in terms of λ.

For the same curve γ, use the height function to show that γ has exactly one inflexion, and that it is not a higher inflexion.
[17 marks]
2. (a) Let α be a unit speed space curve. Define the unit tangent T, the curvature κ and, assuming $\kappa \neq 0$, the unit principal normal N, the unit binormal B and the torsion τ, stating expressions for T^{\prime}, N^{\prime} and B^{\prime} in terms of T, N, B, κ, τ.
[6 marks]
(b) Let $\alpha(s)=\left(\frac{4}{5} \cos s, \frac{3}{5} s, \frac{4}{5} \sin s\right)$. Show that α is unit speed and find, in terms of s, the unit tangent, principal normal, binormal, curvature and torsion.
[8 marks]
(c) Let the space curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be defined by $\gamma(t)=\left(t+4 t^{4}, t^{3}, t+4 t^{5}-t^{6}\right)$. Writing x, y, z for the coordinates in \mathbb{R}^{3}, show that γ meets the plane $x-z=0$ in the points with parameters $t=0$ and $t=2$. Write down the height function on γ in the direction $(1,0,-1)$ and use it to determine, for $t=0$ and $t=2$, the contact between γ and the plane $x-z=0$. State the criterion you are using to determine contact.
[11 marks]

THE UNIVERSITY of LIVERPOOL

3. (a) Write down the meaning of the phrase 'the function f (with variable t) has an A_{k} singularity at $t=t_{0}{ }^{\text {' }}$.

Let $f(t)=t^{4}+a t^{3}+b t^{2}$. Find the values of a and b such that f has an A_{1} singularity at $t=0, t=1$ and $t=-2$. (You must verify that your f does have exactly these singularities.)

Find a local diffeomorphism $h: \mathbb{R}, 0 \rightarrow \mathbb{R}, 0$ such that $f(t)= \pm(h(t))^{k}$, for an appropriate value of k, and all t close to 0 . State briefly why your h is a local diffeomorphism.
[13 marks]
(b) Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $\phi(x, y)=\left(x-y^{2}, x^{2}+y^{3}\right)=(w, z)$ say. Find the critical set Σ of f, that is the set of points (x, y) for which the Jacobian matrix of f has zero determinant. Sketch Σ on a diagram.

Find all points (x, y) for which $\phi(x, y)=(0,0)$, and mark them on your diagram. Do any of these points lie on Σ ?

What does the Inverse Function Theorem say about local inverses of ϕ, defined near $(w, z)=(0,0)$? For any such local inverse, determine the values of $\partial x / \partial w$ and $\partial y / \partial w$ at $(w, z)=(0,0)$.
[12 marks]
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=x^{2}+y^{3}+x^{2} y^{2}+y^{4}$.
(a) Show that the only critical points of f are $(0,0)$ and $\left(0,-\frac{3}{4}\right)$. Let $C=$ $f^{-1}(0)-\{(0,0)\}$. Show that C is a parametrized 1-manifold in a neighbourhood of any of its points, stating clearly any general result which you use. Parametrizing C by x or y as appropriate, find the curvature of C at $(0,-1)$. State without proof any formula which you use for curvature.
[15 marks]
(b) Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $g(x, y, z)=\left(z-f(x, y), x-y^{2}\right)$, for the same f as above. Show that $g^{-1}(0,0)$ is a parametrized 1 -manifold in a neighbourhood of any of its points. Verify that $(1,1,4)$ is a point of $g^{-1}(0,0)$ and find a nonzero tangent vector at this point.
[10 marks]

THE UNIVERSITY of LIVERPOOL

5. Throughout this question, α is a unit speed plane curve with unit tangent T, unit normal N, and curvature κ never 0 .

Show that the equation of the tangent to α at $\alpha(t)$ is $(\mathbf{x}-\alpha(t)) \cdot N(t)=0$ and deduce that this tangent passes through the origin $\mathbf{x}=\mathbf{0}$ if and only if $\alpha(t) \cdot N(t)=0$.

Assume from now on that $\alpha(t) \cdot N(t)$ is never 0 .
Now let $F(t, \mathbf{x})=\alpha(t) \cdot(2 \mathbf{x}-\alpha(t))$. Show that $F(t, x)=0$ if and only if the distance of \mathbf{x} from $\alpha(t)$ equals the distance of \mathbf{x} from the origin $\mathbf{0}$. (It follows that $F(t, \mathbf{x})=0$ is the equation of the perpendicular bisector of the line from the origin to $\alpha(t)$ but you need not show this.)

Show that $\frac{\partial F}{\partial t}=2 T(t) \cdot(\mathbf{x}-\alpha(t))$ and deduce that the envelope of F consists of points $\mathbf{x}=\alpha(t)+\lambda N(t)$ where

$$
\lambda=-\frac{\alpha(t) \cdot \alpha(t)}{2 \alpha(t) \cdot N(t)}
$$

Show that \mathbf{x} is a point of regression on the envelope if and only if $\kappa \lambda=1$ for the above value of λ.

Show that the condition for $F_{\mathbf{x}}$ to have exactly an A_{2} singularity at the parameter value t is that in addition $\kappa^{\prime}(t) \neq 0$.

Show finally that the versal unfolding condition is always satisfied for A_{2} singularities and deduce the local structure of the envelope at such points \mathbf{x}.
[25 marks]

THE UNIVERSITY of LIVERPOOL

6. (a) Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a unit speed plane curve, where $\alpha(t)=$ $(X(t), Y(t))$. Explain why the unit normal $N(t)$ is $\left(-Y^{\prime}(t), X^{\prime}(t)\right)$.

Let two maps $I \times \mathbb{R} \rightarrow \mathbb{R}^{2} \times \mathbb{R}=\mathbb{R}^{3}$ be defined by

$$
\gamma(t, u)=(\alpha(t)+u N(t), t), \quad \delta(t, u)=(\alpha(t)+u N(t), u) .
$$

Show that γ is an immersion at all points (t, u), and that δ fails to be an immersion precisely at points where $\kappa(t) \neq 0$ and $u=\frac{1}{\kappa(t)}$ (as usual, κ is the curvature of $\alpha)$.
[15 marks]
(b) In each of the following cases, the formula F gives an unfolding of the function $f(t)=F(t, \mathbf{0})$ at $t=0$. Determine the A_{k} type of the function f at $t=0$ and whether the unfolding is versal. State the versality criterion which you are using.
(i) $F(t, x, y)=t^{3}+(2 x+3 y) t+\left(x^{2}+y\right)$,
(ii) $F(t, x, y, z)=-t^{5}+(\cos x) t^{4}+(\sin y) t^{2}+x t+z$.
[10 marks]
7. Let γ be a unit speed space curve with curvature never zero. The normal plane to γ at the parameter value t is the plane through $\gamma(t)$ orthogonal to $T(t)$, i.e. with equation $F(\mathbf{x}, t)=0$, where $F(\mathbf{x}, t)=(\mathbf{x}-\gamma(t)) \cdot T(t)$, where $\mathbf{x} \in \mathbb{R}^{3}$.

Show that the envelope of these normal planes contains one line in each normal plane, having the form

$$
\mathbf{x}=\gamma(t)+\frac{1}{\kappa(t)} N(t)+\mu B(t)
$$

where μ is an arbitrary real number.
Show that the points of regression on the envelope are given by either
(a) $\tau=\kappa^{\prime}=0, \quad \mu$ arbitrary, or (b) $\tau \neq 0, \quad \mu=-\frac{\kappa^{\prime}}{\kappa^{2} \tau}$, where $\kappa, \kappa^{\prime}, \tau$ are evaluated at t.

Find the 1 -jet and 2-jet matrices with constants for the unfolding F. Show that the 1 -jet matrix always has rank 2 and the 2 -jet matrix has rank 3 if and only if $\tau \neq 0$.

State what can be deduced about the structure of the envelope of normal planes at x, when (i) F has type A_{2}, (ii) F has type A_{3}. (You need not calculate the conditions for these A_{k} types to occur.)
[25 marks]

