1.

The Navier-Stokes equation of motion can be written as follows:

$$
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} . \nabla \mathbf{u}\right)=-\nabla p+\mu \nabla^{2} \mathbf{u} .
$$

(i)

Non-dimensionalise this equation based on characteristic length scale, L and velocity scale, U, and scale pressure based on the viscous terms. What is the Stokes flow approximation?
(ii)
[5 marks]
Assuming Stokes flow is a valid approximation, explain why the drag force, F, on a body of length L sinking at speed U in water of viscosity μ can be written:

$$
F=C_{f} \mu L U,
$$

where C_{f} is a dimensionless number which only depends on the shape of the body.
(iii)

To compute the sinking speed of a diatom with a complex geometry, a selfsimilar model is constructed with length 1 cm . This model diatom has the same density as a real diatom, and is measured to sink at $5 \mathrm{~cm} / \mathrm{s}$ in glycerol solution ($\rho=1 \mathrm{~g} / \mathrm{cm}^{3}, \mu=1000 \mathrm{~g} / \mathrm{cms}$). If the real diatom has length $20 \times 10^{-4} \mathrm{~cm}$, what speed does it sink at in seawater $\left(\rho=1 \mathrm{~g} / \mathrm{cm}^{3}, \mu=\right.$ $\left.10^{-2} \mathrm{~g} / \mathrm{cms}\right)$?
2. Assume Stokes flow throughout.

The stresslet flow field is given by the equation:

$$
\mathbf{u}_{\text {stress }}=\frac{1}{8 \pi \mu}\left(-\frac{\mathbf{F} . \mathbf{b}}{r^{3}}+3 \frac{(\mathbf{F} . \mathbf{r})(\mathbf{b} . \mathbf{r})}{r^{5}}\right) \mathbf{r}
$$

This flow field can be generated by 2 forces of equal and opposite strength (\mathbf{F} and $-\mathbf{F})$ separated by the vector \mathbf{b} as shown in the following figure:

(i)

In spherical polar coordinates (r, θ, ϕ) as shown in the figure, show that the stresslet flow field reduces to

$$
\begin{equation*}
\mathbf{u}_{\text {stress }}=\frac{|\mathbf{F}||\mathbf{b}|}{8 \pi \mu r^{2}}\left(3 \cos ^{2} \theta-1\right) \mathbf{e}_{r}, \quad \text { where } \quad \mathbf{r}=r \mathbf{e}_{r} \tag{1}
\end{equation*}
$$

(ii)

Verify that the flow field described by eq. (1) is incompressible. You may use the result that

$$
\nabla \cdot \mathbf{v}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} v_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta v_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}
$$

(iii)

Consider a neutrally buoyant self propelled sphere. With the assistance of clear diagrams, explain how a stresslet could be used to model this organism. Using the stresslet model, and taking a frame of reference moving with the organism, thus compute the magnitude of the velocity a distance $10 a$ directly ahead of the organism. You may use the result that the drag on a sphere has magnitude $6 \pi \mu a U$.
3. Consider a micro-organism which swims at steady velocity $-U \mathbf{i}$ and is propelled by an inextensible flagellum of length L undergoing planar waving motion with wave velocity $V \mathbf{i}$. At $t=0$ the position of centreline of the flagellum is given by the parametric equation:

$$
\mathbf{R}(s)=(X(s), Y(s)), \quad 0<s<L
$$

where s is arc length measured from one end. The wave is periodic and satisfies

$$
X(0)=0, \quad X(L)=\alpha L
$$

Resistive force theory states that the force acting on an element of flagellum of length $d s$ moving with velocity $-\mathbf{w}$ is given by

$$
F_{t}=K_{T} \mathbf{w} \cdot \mathbf{t} d s, \quad F_{n}=K_{N} \mathbf{w} \cdot \mathbf{n} d s
$$

where F_{t} and F_{n} are the components of force tangential and normal to the flagellum respectively, and \mathbf{t} and \mathbf{n} are unit tangent and normal vectors respectively.
(i)

Show that F, the force in the \mathbf{i} direction on an element of flagellum of length $d s$ moving with velocity $-\mathbf{w}$, can be written as

$$
F=\left(K_{T}-K_{N}\right)(\mathbf{w . t})(\mathbf{t} . \mathbf{i}) d s+K_{N} \mathbf{w} . \mathbf{i} d s
$$

You can use the identity w.i=(w.t)(t.i) $+(\mathbf{w . n})(\mathbf{n} . \mathbf{i})$.
(ii)

The velocity of a material point on the flagellum relative to the fluid far away is $-\mathbf{w}$, where

$$
\mathbf{w}=(U-V) \mathbf{i}+\frac{V}{\alpha} \mathbf{t} .
$$

Show that the total thrust in the \mathbf{i} direction generated by the flagellum is given by

$$
T=(V-U)\left[\left(K_{T}-K_{N}\right) \beta L+K_{N} L\right]-K_{T} V L, \quad \beta L=\int_{0}^{L} X^{\prime 2} d s
$$

4. A bottom heavy sphere is at position $\mathbf{x}(t)=(x(t), y(t), 0)$ is placed in Poiseuille flow between two parallel plates, $\mathbf{u}=-\frac{W_{0}}{h^{2}}\left(h^{2}-x^{2}\right) \hat{\mathbf{y}}$. The microorganism swims at speed v and the swimming direction $\mathbf{p}=(\sin \theta, \cos \theta, 0)$ satisfies the following vector equation:

$$
\frac{d \mathbf{p}}{d t}=\frac{1}{2 B}[\hat{\mathbf{y}}-(\hat{\mathbf{y}} \cdot \mathbf{p}) \mathbf{p}]+\frac{1}{2} \boldsymbol{\omega} \wedge \mathbf{p}
$$

where $\boldsymbol{\omega}$ is the vorticity of the flow.
(i)
[11 marks]
Derive a set of differential equations satisfied by $\theta(t), x(t)$ and $y(t)$.
(ii)
[3 marks]
What conditions must be satisfied for a there to be a steady-state solution for swimming direction? (You may assume the cell's swimming speed is sufficiently small for variation in the ambient flow as the cell swims to be negligible.)
(iii)

Compute $x(t)$ for a cell swimming with steady orientation θ_{s} initially at $x=-h$. Sketch this solution.
5.
a)

Defining H with respect to the pressure, density and velocity of a fluid:

$$
H=\frac{p}{\rho}+\frac{1}{2}|\mathbf{u}|^{2} .
$$

Under what conditions does Bernoulli's theorem, which states that H is a constant throughout the flow field, hold?
b) Consider the 2D flow field around a cylinder of radius a described by the following stream function:

$$
\psi=-U\left(r-\frac{a^{2}}{r}\right) \sin \theta-\frac{\kappa}{2 \pi} \log r, \quad \text { where } \quad u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad u_{\theta}=-\frac{\partial \psi}{\partial r} .
$$

(i)
[8 marks]
Using Bernoulli's theorem, compute the pressure distribution outside the cylinder.
(ii)

The total force on the cylinder perpendicular to the free stream velocity is given by

$$
F_{p}=a \int_{0}^{2 \pi} p \sin \theta d \theta
$$

Compute F_{p}.
(You may use the result that $\int_{0}^{2 \pi} \sin ^{3} \theta d \theta=0, \int_{0}^{2 \pi} \sin ^{2} \theta d \theta=\pi$)
(iii)
[4 marks]
Explain how F_{p} relates to the lift on a wing with reference to the Kutta-Joukowski hypothesis.
6. For the Lighthill elongated body theory for a fish of length l swimming at steady speed U, take $h(x, t)$ as the equation of the centreline, and $w(x, t)$ as the lateral velocity of the water:

$$
w(x, t)=\frac{\partial h}{\partial t}+U \frac{\partial h}{\partial x} \equiv \mathcal{D} h
$$

The rate of increase in kinetic energy of the water surrounding the fish is given by

$$
\int_{0}^{l} \mathcal{D}\left(\frac{1}{2} m w^{2}\right) d x
$$

(i)

Show that the average total rate of increase of the kinetic energy of the water is given by

$$
\frac{1}{2} U\left[m<w^{2}>\right]_{x=l},
$$

stating clearly any assumptions you make. Average is defined in the standard way: $\langle f\rangle=\frac{1}{T} \int_{0}^{T} f(t) d t$, where T is the time period of motion.

The average work done per unit time by body motions is given by

$$
<E_{L}>=\left[U m<w \frac{\partial h}{\partial t}>\right]_{x=l} .
$$

Consider the following fish undulation (standing wave):

$$
h(x, t)=H \sin (k x) \cos (\omega t)
$$

(ii)

From energy considerations, show that the mean thrust exerted by the fish on the water is given by

$$
<T>=\frac{1}{4} m(l) H^{2}\left(w^{2}-U^{2} k^{2}\right) \sin ^{2}(k l)
$$

You may use the result that $\left\langle\cos ^{2} w t\right\rangle=\left\langle\sin ^{2} w t\right\rangle=\frac{1}{2}$.
(iii)

Show that the maximum efficiency is $1 / 2$, where efficiency, η, is defined:

$$
\eta=\frac{U<T\rangle}{\left\langle E_{L}\right\rangle} .
$$

7.

a)

Consider the following non-dimensional cell conservation equation for cells swimming in a still fluid:

$$
\begin{aligned}
\frac{\partial n}{\partial t} & =-\nabla \cdot \mathbf{j} \\
\text { where the cell flux is given by } \mathbf{j} & =n d \hat{\mathbf{z}}-\nabla n .
\end{aligned}
$$

Show that the following equilibrium solution satisfies the this governing equation with no flux boundary conditions at $z=0, z=-1$:

$$
n_{\text {equil }}=\exp (d z) .
$$

(b) Consider a small 2D perturbation to this steady equilibrium state:

$$
\mathbf{u}=\epsilon \mathbf{u}^{\prime}=\epsilon\left(u^{\prime}, 0, w^{\prime}\right), \quad n=n_{\text {equil }}(z)+\epsilon n^{\prime}
$$

The non-dimensional linearized Navier Stokes equations are given by:

$$
\begin{aligned}
\frac{D}{\nu} \frac{\partial \mathbf{u}^{\prime}}{\partial t} & =-\nabla p_{e}^{\prime}-R n^{\prime} \hat{\mathbf{z}}+\nabla^{2} \mathbf{u}^{\prime} \\
\nabla \cdot \mathbf{u}^{\prime} & =0
\end{aligned}
$$

(i)

Explain whether you expect bioconvection to occur with reference to the critical Rayleigh number, $R_{\text {crit }}$.
(ii)

Taking the following perturbation

$$
w^{\prime}=\sin (k x) \mathcal{W}(z) e^{\sigma t}, \quad n^{\prime}=\sin (k x) \mathcal{N}(z) e^{\sigma t}
$$

Compute the 6 th order differential equation satisfied by $\mathcal{W}(z)$. You may use the results that for an incompressible flow

$$
\begin{array}{r}
\nabla \wedge(\nabla \wedge \mathbf{u})=-\nabla^{2} \mathbf{u} \\
\nabla \wedge\left(\nabla \wedge\left(n^{\prime} \hat{\mathbf{z}}\right)\right)=-\frac{\partial^{2} n^{\prime}}{\partial x \partial z} \hat{\mathbf{x}}-\frac{\partial^{2} n^{\prime}}{\partial x^{2}} \hat{\mathbf{z}} \\
\nabla \cdot\left(n \mathbf{u}^{\prime}\right)=\mathbf{u}^{\prime} .(\nabla n) .
\end{array}
$$

