
1.

a) [6 marks]

The Navier-Stokes equations of motion can be written as follows:

ρ

(
∂u

∂t
+ u.∇u

)
= −∇p + µ∇2u.

Non-dimensionalise this equation based on characteristic length scale, L,
and velocity scale, U , and scale pressure based on the inertial terms. Define
an appropriate Reynolds number.

b) A study is performed on the aerodynamics of insect wings. Measurements
are made on thin plates shaped exactly like fly wings but with linear di-
mensions four times larger.

(i) [3 marks]

What should the velocity in the wind tunnel be to correctly model a
flow of speed 200cm/s around a real insect wing? State any assump-
tions you make.

(ii) [6 marks]

The drag on the model wing in the wind tunnel is measured as 3 ×
10−3gcm/s2. Using dimensional arguments, explain why the drag can
be written as

D =
1

2
CDρU2L2,

where CD only depends on the Reynolds number and the shape of the
wing. Calculate the drag on the real wing explaining carefully your
method.

(iii) [5 marks]

How would your answers to (i) and (ii) change if you ran the same
experiment in a tank of water? Assume µa and ρa represent the vis-
cosity and density of air respectively, and µw, and ρw the corresponding
values for water. Express your answer in terms of these variables.
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2.

Consider a sphere of radius a moving with velocity U in unbounded fluid
which is at rest at infinity. Take spherical polar coordinates (r, θ, φ) with θ = 0
parallel to U and the origin at the centre of the sphere. Neglecting inertia, the
axisymmetric flow generated by the sphere is given by

ur = 2

(
C

r
+

D

r3

)
cos θ, uθ =

(
−C

r
+

D

r3

)
sin θ, uφ = 0.

(i) [5 marks]

Verify that this flow is incompressible. You may use the result that

∇.F =
1

r2

∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fφ

∂φ
.

(ii) [5 marks]

Compute C and D for a rigid sphere of radius a, clearly stating the bound-
ary conditions.

(iii) [5 marks]

The magnitude of the drag force on this sphere is 6πaµU . Compute a
stokeslet velocity field representing a point force of magnitude F acting at
the origin in the direction θ = 0 using the result of (ii).

(iv) [5 marks]

With the assistance of clear diagrams, explain why a stokeslet could be used
to model a hovering negatively buoyant copepod. Give an example of one
limitation of this model.
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3.

Consider a micro-organism which swims at steady velocity −U i and is pro-
pelled by an inextensible flagellum of length L undergoing planar waving motion
with wave velocity V i . At t = 0 the position of the centreline of the flagellum is
given by the parametric equation:

R(s) = (X(s), Y (s)), 0 < s < L,

where s is arc length measured from one end.

Resistive force theory states that the force acting on an element of flagellum
of length ds moving with velocity −w is given by

FT = KTw.tds, FN = KNw.nds,

where FT and FN are the components of force tangential and normal to the flagel-
lum respectively, and t and n are unit tangent and normal vectors respectively.

(i) [8 marks]

Show that −T , the total force on the flagellum in the i direction, is given
by

−T = (KT −KN)

∫ L

0

(w.t)(t.i)ds + KN

∫ L

0

w.ids.

You can use the identity w.i = (w.t)(t.i) + (w.n)(n.i).

(ii) [12 marks]

Consider an idealised shape defined by

X(s) = αs,

where α is some constant such that 0 < α < 1. The velocity of a material
point on the flagellum relative to the fluid far away is −w, where

w = (U − V )i +
V

α
t.

Show that the swimming speed for zero thrust swimming (i.e. neglecting
the head) is given by

U = V
(1− α2)(1− γ)

1− α2(1− γ)
, where γ =

KT

KN

.
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4.

A bottom heavy spherical micro-organism is at position (x(t), y(t), 0) in a
planar shear flow, u = γyx̂. The micro-organism swims at speed v with swimming
direction p = (sin θ, cos θ, 0) that satisfies the following vector equation:

dp

dt
=

1

2B
[ŷ − (ŷ.p)p] +

1

2
ω ∧ p,

where ω is the vorticity of the flow.

(i) [11 marks]

Derive a set of differential equations satisfied by θ(t), x(t) and y(t).

(ii) [3 marks]

Carefully describe the 2 types of motion which depend on the relative mag-
nitudes of B and γ.

(iii) [6 marks]

Compute and sketch the trajectory of the cell swimming with steady ori-
entation θs initially at (0, 0). Mark the angle θs on the sketch.
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5.

(i) [6 marks]

Derive the Bernoulli theorem for steady irrotational flow, starting from
Euler’s equation of motion for inviscid flow:

∂u

∂t
+ u.∇u = −1

ρ
∇p.

You can use the identity (∇∧ u) ∧ u = u.∇u−∇(1
2
u2).

(ii) [4 marks]

Consider the 2D irrotational flow given in cylindrical polar coordinates by
u = κ

2πr
eθ. Compute the circulation around a circle centred at the origin.

(iii) [5 marks]

Explain how lift is generated by steady flow past a wing, with reference to
the Bernoulli theorem and the Kutta-Joukowski hypothesis.

(iv) [5 marks]

In still air, an albatross is observed to steadily glide at an angle α to the
horizontal with speed U . The weight of the bird is W . With the aid of force
diagrams, what thrust would be required for the bird to fly horizontally with
the same speed?
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6.

For the Lighthill elongated body theory for a fish of length l swimming at
steady speed U , take h(x, t) as the equation of the centreline, and w(x, t) as the
lateral velocity of the water:

w(x, t) =
∂h

∂t
+ U

∂h

∂x
≡ Dh.

The work done per unit time by periodic body motions can be written as

EL =

∫ l

0

D(mw
∂h

∂t
)dx−

∫ l

0

mw
∂w

∂t
dx,

where m(x) is the virtual mass per unit length.

(i) [7 marks]

Show that the average work done per unit time is given by

< EL >= [Um < w
∂h

∂t
>]x=l,

stating clearly any assumptions you make. Average is defined in the stan-
dard way: < f >= 1

T

∫ T

0
f(t)dt, where T is the time period of motion.

The average rate of increase in kinetic energy of the water surrounding the fish
is given by

<

∫ l

0

D(
1

2
mw2)dx >= [

1

2
Um < w2 >]x=l,

Consider the following fish undulation:

h(x, t) = H sin(α(x− V t)).

(ii) [9 marks]

From energy considerations, show that the mean thrust exerted by the fish
on the water is given by

< T >=
1

4
m(l)α2H2(V 2 − U2).

You may use the result that < cos2((α(x− V t)) >= 1
2
.

(iii) [4 marks]

If the viscous drag on the fish is βU2, compute the swimming speed, U , of
the fish as a function of m(l), H and V .
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7.

The non-dimensional equations for bioconvection can be written as:

D

ν

(
∂u

∂t
+ u.∇u

)
= −∇pe −Rnẑ +∇2u, (1)

∇.u = 0, (2)

∂n

∂t
= −∇. (n(u + dẑ)−∇n) . (3)

(i) [2 marks]

Explain whether you expect bioconvection to occur with reference to the
critical Rayleigh number, Rcrit.

(ii) [3 marks]

Write down suitable boundary conditions for n and u for rigid boundaries
at z = 0 and z = −1.

(iii) [4 marks]

Show that the following equilibrium solution satisfies the governing equation
for cell concentration (equation 3) and boundary conditions.

u = 0, nequil = exp(dz).

(iv) [11 marks]

Consider a small 2D perturbation to equilibrium:

u′ = εu′ = ε

(
∂ψ

∂z
, 0,−∂ψ

∂x

)
,

n′ = nequil + εn′.

Linearise equations (1) and (3) to obtain a coupled pair of equations for
u′(x, z, t) and n′(x, z, t). By eliminating the pressure term, derive a coupled
pair of linear differential equations for ψ(x, z, t) and n′(x, z, t). You may
use the following results:

∇∧ u′ = ∇2ψŷ,

∇∧ (n′ẑ) = −∂n′

∂x
ŷ,

∇.(nu′) = n(∇.u′) + u′.(∇n).
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