

THE UNIVERSITY of Liverpool

SUMMER 2006 EXAMINATIONS

```
Master of Mathematics: Year 4
```

WAVES. MATHEMATICAL MODELLING

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. Your best answers to FOUR questions only will be taken into account.

THE UNIVERSITY
 of Liverpool

1. i. Find the characteristics of the Tricomi equation

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

in the lower half plane $y<0$, and hence put it into its canonical form.
[9 marks]
ii. (a) The continuity equation and Euler's equations of motion (no body force) are linearised by assuming that $\rho=\rho_{0}+\rho_{1}, p=p_{0}+p_{1}$ and $\mathbf{u}=\mathbf{u}_{0}+\mathbf{u}_{1}$, where the terms with the indices 0 are constants and the terms with the indices 1 denote small perturbations to the respective fields, to obtain

$$
\frac{\partial \rho_{1}}{\partial t}+\rho_{0} \nabla \cdot \mathbf{u}_{1}+\mathbf{u}_{0} \cdot \nabla \rho_{1}=0, \quad \frac{\partial \mathbf{u}_{1}}{\partial t}+\left(\mathbf{u}_{0} \cdot \nabla\right) \mathbf{u}_{1}+\frac{c_{0}^{2}}{\rho_{0}} \nabla \rho_{1}=0
$$

Here, ρ, p and \mathbf{u} stand for density, pressure and velocity of the medium, respectively; $c_{0}^{2}=\gamma p_{0} / \rho_{0}$ is the leading order wave speed of the medium, where $\gamma>1$ is a dimensionless constant.
Now, assuming that the total velocity field is derived from a potential ϕ, show that

$$
\rho_{1}=-\frac{\rho_{0}}{c_{0}^{2}}\left(\frac{\partial}{\partial t}+\mathbf{u}_{0} \cdot \nabla\right) \phi, \quad p_{1}=-\rho_{0}\left(\frac{\partial}{\partial t}+\mathbf{u}_{0} \cdot \nabla\right) \phi
$$

and

$$
\left(\frac{\partial}{\partial t}+\mathbf{u}_{0} \cdot \nabla\right)^{2} \phi-c_{0}^{2} \nabla^{2} \phi=0
$$

[11 marks]
(b) Describe appropriate boundary conditions in terms of the velocity potential ϕ for the following boundaries:

- A fixed rigid boundary,
- A traction free boundary,
- An interface boundary between two fluids, assuming that the velocity field in the second medium is derived from a potential ϕ^{*}.
[5 marks]

THE UNIVERSITY of LIVERPOOL

2. i. A time-harmonic plane wave characterised by a complex velocity potential $\psi^{(I)}$ with amplitude A, radian frequency ω and speed c is incident to a wall covered with acoustic tiles as shown in the figure, generating a reflected plane wave. The x-axis is chosen to be horizontal and the y-axis vertically upwards. α denotes the angle of the incident wave, whereas α_{R} stands for the angle of the reflected wave, both indicated clearly in the diagram.
Write down the complex velocity potential $\psi^{(I)}$ taking into account the direction of propagation of the wave.
[3 marks]

The acoustic tiles are assumed to absorb energy. Thus the boundary condition on the tiled wall is given as

$$
\frac{\partial \psi^{(\text {total })}}{\partial x}=-\lambda \frac{\partial \psi^{(\text {total })}}{\partial t}
$$

where λ is the wavelength and $\psi^{(t o t a l)}$ is the combined fields of the incident and reflected waves.
Show that $\alpha=\alpha_{R}$ and hence deduce that the complex velocity potential for the reflected wave is given by

$$
\psi^{(R)}(x, y, t)=A \frac{\cos (\alpha)-\lambda c}{\cos (\alpha)+\lambda c} \mathrm{e}^{-i \omega\left\{t-\frac{1}{c}[-x \cos (\alpha)+y \sin (\alpha)]\right\}}
$$

[10 marks]
Introducing the parameter $s=\sin (\alpha)$ and formally assuming that $s>$ 1, use the complex potential above to show that an evanescent wave, i.e. a wave, in this particular case, which is oscillatory in y-direction and which decays as $x \rightarrow-\infty$, can be produced.
ii. Solve the following nonlinear initial value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x} & =0, \quad x \in(0, \infty), t>0 \\
u(x, 0) & =a x, \quad t>0
\end{aligned}
$$

where $a \in \mathbf{R}$ is constant.

THE UNIVERSITY
 of LIVERPOOL

3. i. (a) Show that the three-dimensional wave equation posed for the velocity potential ϕ, i.e.

$$
\phi_{t t}-c^{2} \nabla^{2} \phi=0,
$$

can be reduced to

$$
(r \phi)_{t t}-c^{2} \frac{\partial^{2}}{\partial r^{2}}(r \phi)=0
$$

and thus possesses a solution of the form $F(t-r / c) / r$, characterising waves propagating radially outwards from a source, where $r=|\mathbf{x}|$.
[6 marks]
(b) A simple source is placed at $(0,0, a)$ above a fixed rigid wall $x_{3}=0$, as shown in the diagram. If the velocity potential for the incident wave characterising an outgoing wave from this source is given as
$\Phi^{I}=-\frac{1}{r_{1}} S^{I}\left(t-r_{1} / c\right), \quad r_{1}=\left[x_{1}^{2}+x_{2}^{2}+\left(x_{3}-a\right)^{2}\right]^{1 / 2}$,
where S^{I} denotes the strength of the source, find the
 velocity potential for the reflected wave, by using a fictitious image source.
Now, assuming that the strength of the source is of the form $S^{I}(t)=$ $\mathrm{e}^{-i \omega t}$, show that the total velocity potential at point P can be approximated by

$$
\left.\Phi^{\mathrm{total}}\right|_{P} \sim-\frac{2}{R} \cos [k a \sin (\alpha)] \mathrm{e}^{i(k R-\omega t)},
$$

under the assumption that $a \ll R$, where R is the distance from O to P, and α is the angle between the fixed $x_{1} x_{2}-$ plane and $O P$.
[12 marks]
ii. Solve the following nonlinear initial value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x} & =0, \quad x \in(0, \infty), t>0 \\
u(x, 0) & = \begin{cases}2, & -\infty<x \leq-1 \\
2 x^{2}, & -1 \leq x \leq 0 \\
1, & 0 \leq x<\infty\end{cases}
\end{aligned}
$$

THE UNIVERSITY of LIVERPOOL

4. Consider the following first-order quasilinear hyperbolic system

$$
\mathbf{v}_{t}+A \mathbf{v}_{x}=\mathbf{0}
$$

where

$$
\mathbf{v}=\binom{\rho}{u}, \quad A=\left(\begin{array}{cc}
u & \rho \\
c^{2} / \rho & u
\end{array}\right) .
$$

Here, ρ denotes the density, u the velocity and c the wave speed of a flow.
(a) Write down the differential equations defining the characteristics for this system.
(b) Prove that, if we can find a function Γ (Riemann invariant) associated with an eigenvalue λ, satisfying

$$
A^{\top} \frac{\partial \Gamma}{\partial \mathbf{v}}=\lambda \frac{\partial \Gamma}{\partial \mathbf{v}}
$$

then Γ is constant along the corresponding characteristic.
(c) Hence using

$$
c(\rho)=\left(\gamma B \rho^{\gamma-1}\right)^{1 / 2}
$$

where $\gamma>1, B>0$ are constants, deduce that

$$
\Gamma_{ \pm}=u \pm \frac{2 c}{\gamma-1}
$$

are invariant along characteristics.
[7 marks]

THE UNIVERSITY
 of LIVERPOOL

5. (a) Give the definition of a weak solution of the following partial differential equation

$$
\frac{\partial \mathbf{v}}{\partial t}+\frac{\partial \mathbf{a}(\mathbf{v})}{\partial x}=\mathbf{0}
$$

(b) Give the definition of a shock trajectory Γ. Show that the jump across Γ associated with $\mathbf{a}(\mathbf{v})$ is equal to zero, provided that Γ is parallel to the t-axis.
(c) Find a weak solution to the following Cauchy problem

$$
\begin{aligned}
2 \frac{\partial u}{\partial t}+\frac{\partial\left(u^{2}\right)}{\partial x} & =0 \\
u(x, 0) & = \begin{cases}2, & 0<x \\
0, & x>0\end{cases}
\end{aligned}
$$

[10 marks]
6. The linearised problem for water waves in a channel of width a along the x_{2}-direction, is given in terms of a complex velocity potential ψ as

$$
\begin{aligned}
\nabla^{2} \psi & =0, \quad x_{3} \in(0, h) \\
\left.\mathbf{n} \cdot \nabla \psi\right|_{x_{3}=0} & =0,\left.\quad\left(\frac{\partial^{2} \psi}{\partial t^{2}}+g \frac{\partial \psi}{\partial x_{3}}\right)\right|_{x_{3}=h}=0,
\end{aligned}
$$

where \mathbf{n} is the unit vector normal to the bottom of the channel, g is the gravitational acceleration and h is the unperturbed height of the water.
Show that the dispersion relation

$$
\omega^{2}=g k \tanh (k h)
$$

between the radian frequency ω and the wave number k, holds. Discuss the cases when $h \rightarrow 0$ and $h \rightarrow \infty$.
[15 marks]
Also, show that the velocity components are given by
$u_{1}=0, u_{2}=C k \cosh \left(k x_{3}\right) \sin \left(\omega t-k x_{2}\right), u_{3}=C k \sinh \left(k x_{3}\right) \cos \left(\omega t-k x_{2}\right)$, and hence, stating the shape of their trajectories, find the particle paths. How do the trajectories change when $x_{3} \rightarrow 0$ and $x_{3} \rightarrow h$?
[10 marks]

