THE UNIVERSITY
 of LIVERPOOL

JANUARY 2008 EXAMINATIONS

MMath: Year 4

LINEAR DIFFERENTIAL OPERATORS IN MATHEMATICAL PHYSICS

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Full marks will be awarded for complete answers to FIVE questions. Only the best 5 answers will be taken into account.

THE UNIVERSITY of LIVERPOOL

1. Let $D=\{\mathbf{x}:|\mathbf{x}|<1\}$ be a unit disk with the centre at the origin, and let the energy functional \mathcal{E} in D be defined by

$$
\begin{equation*}
\mathcal{E}(u ; D)=\int_{D}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} . \tag{1}
\end{equation*}
$$

The class \mathcal{A} of admissible functions is introduced as follows

$$
\begin{equation*}
\mathcal{A}=\{\text { smooth } u \text { on } D: \mathcal{E}(u ; D)<+\infty, u=\cos (2 \theta) \text { when }|\mathbf{x}|=1\} \tag{2}
\end{equation*}
$$

where θ is the polar angle.
Prove that

$$
\begin{equation*}
\mathcal{E}\left(x_{1}^{2}-x_{2}^{2} ; D\right) \leq \mathcal{E}(u ; D) \text { for any } u \in \mathcal{A} \tag{3}
\end{equation*}
$$

[20 marks]
Hint: Verify that $x_{1}^{2}-x_{2}^{2}$ is harmonic in D and $x_{1}^{2}-x_{2}^{2} \in \mathcal{A}$.
2. Let $w(\mathbf{x}, t)$ satisfy the wave equation

$$
\begin{equation*}
\frac{\partial^{2} w(x, t)}{\partial t^{2}}-\frac{\partial^{2} w(x, t)}{\partial x^{2}}=0 \text { for } x \in(-1,1), t>0 \tag{4}
\end{equation*}
$$

together with the initial and boundary conditions

$$
\begin{gather*}
w(x, 0)=\cos (\pi x), \frac{\partial w}{\partial t}(x, 0)=0 \text { for } x \in(-1,1) \tag{5}\\
w(-1, t)=\frac{\partial w}{\partial t}(1, t)=0 \text { for all } t>0 \tag{6}
\end{gather*}
$$

Given the energy functional $E(w, t)$ defined by

$$
\begin{equation*}
E(w, t)=\int_{-1}^{1}\left\{\left(\frac{\partial w}{\partial t}(x, t)\right)^{2}+\left(\frac{\partial w}{\partial x}(x, t)\right)^{2}\right\} d x \tag{7}
\end{equation*}
$$

evaluate $E(w, 5)$.

Hint: Verify that the solution $w(x, t)$ of the problem (4)-(6) satisfies the identity $E\left(w, t_{1}\right)=E\left(w, t_{2}\right)$ for any $t_{1}, t_{2} \geq 0$.

Paper Code MATH421 Page 2 of 6
CONTINUED/
3. This question uses the notion of distributions.
(a) Let

$$
f(x)=\left\{\begin{array}{cc}
1, & x>3 \tag{8}\\
(x-2), & 2<x \leq 3 \\
0, & x \leq 2
\end{array}\right.
$$

Interpret $f^{\prime \prime}(x)$ in the sense of distributions and verify that

$$
\begin{equation*}
\left(f^{\prime \prime}(x), \varphi(x)\right)=\varphi(2)-\varphi(3) \tag{9}
\end{equation*}
$$

for any test function $\varphi(x) \in \mathcal{D}(\mathbf{R})$.
[7 marks]
(b) Let $f(\mathbf{x})=\log |\mathbf{x}|$, where $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$. Evaluate

$$
\begin{equation*}
\Delta f(\mathbf{x})=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}} \tag{10}
\end{equation*}
$$

in the sense of distributions and prove that

$$
\begin{equation*}
\Delta(\log |\mathbf{x}|)=2 \pi \delta(\mathbf{x}) \tag{11}
\end{equation*}
$$

where $\delta(\mathbf{x})$ is the Dirac delta function.
[13 marks]
4. This question requires analysis of solutions of the wave equation.
(a) The fundamental solution $G(x, t)$ of the wave equation satisfies the following Cauchy problem

$$
\begin{gather*}
\frac{\partial^{2} G(x, t)}{\partial x^{2}}-\frac{\partial^{2} G(x, t)}{\partial t^{2}}=0, x \in(-\infty,+\infty), t>0 \tag{12}\\
G(x, 0)=0, \frac{\partial G}{\partial t}(x, 0)=\delta(x), x \in(-\infty,+\infty) \tag{13}
\end{gather*}
$$

Verify that $G(x, t)$ can be represented in the form

$$
\begin{equation*}
G(x, t)=\frac{1}{2}(H(x+t)-H(x-t)) . \tag{14}
\end{equation*}
$$

[10 marks]
Paper Code MATH421 Page 3 of 6
(b) Find the solution $u(x, t)$ of the Cauchy problem for an infinite vibrating string

$$
\begin{equation*}
\frac{\partial^{2} u(x, t)}{\partial x^{2}}-\frac{\partial^{2} u(x, t)}{\partial t^{2}}=0, x \in(-\infty,+\infty), t>0 \tag{15}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=e^{-|x|}, \quad x \in(-\infty, \infty) \tag{16}
\end{equation*}
$$

[10 marks]
Hint: Use the D'Alembert formula.
5. Boundary value problems for Laplace's operator are included in this question.
(a) Derive the representation of Green's function $G(\mathbf{x}, \mathbf{y})$, where $\mathbf{x}=$ $\left(x_{1}, x_{2}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}\right)$, for the operator $-\Delta$ in the half-plane

$$
\begin{equation*}
\mathbf{R}_{+}^{2}=\left\{\left(x_{1}, x_{2}\right): x_{1} \in(-\infty, \infty), x_{2}>0\right\} \tag{17}
\end{equation*}
$$

Green's function is defined as the solution of the following boundary value problem

$$
\begin{equation*}
\frac{\partial^{2} G}{\partial x_{1}^{2}}(\mathbf{x}, \mathbf{y})+\frac{\partial^{2} G}{\partial x_{2}^{2}}(\mathbf{x}, \mathbf{y})+\delta(\mathbf{x}-\mathbf{y})=0, \quad \mathbf{x}, \mathbf{y} \in \mathbf{R}_{+}^{2} \tag{18}
\end{equation*}
$$

with the Dirichlet boundary condition

$$
\begin{equation*}
G(\mathbf{x}, \mathbf{y})=0 \text { when } x_{1} \in(-\infty, \infty), x_{2}=0, \mathbf{y} \in \mathbf{R}_{+}^{2} \tag{19}
\end{equation*}
$$

Here $\delta(\mathbf{x})$ is the Dirac delta function.

> [10 marks]
(b) Find a solution of the following Dirichlet boundary value problem in the half-plane

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right)+\frac{\partial^{2} u}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right)=0, \quad\left(x_{1}, x_{2}\right) \in \mathbf{R}_{+}^{2}, \tag{20}\\
u\left(x_{1}, 0\right)=\delta\left(x_{1}-1\right)-\delta\left(x_{1}+1\right), \tag{21}\\
\lim _{x_{1}^{2}+x_{2}^{2} \rightarrow \infty} u\left(x_{1}, x_{2}\right)=0 . \tag{22}
\end{gather*}
$$

[10 marks]
Paper Code MATH421 Page 4 of 6
6. Let (r, θ, φ) be spherical coordinates. A function $u(r, \theta, \varphi)$ harmonic in the interior of the unit sphere satisfies the integral Poisson's formula

$$
\begin{equation*}
u(r, \theta, \varphi)=\frac{1-r^{2}}{4 \pi} \int_{0}^{\pi} d \theta^{\prime} \int_{0}^{2 \pi} d \varphi^{\prime} \frac{u\left(1, \theta^{\prime}, \varphi^{\prime}\right) \sin \theta^{\prime}}{\left(1+r^{2}-2 r \cos \gamma\right)^{3 / 2}} \tag{23}
\end{equation*}
$$

where

$$
\cos \gamma=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\varphi^{\prime}-\varphi\right), \quad 0 \leq r<1
$$

Derive the integral representation for a function $v(r, \theta, \varphi)$, which satisfies Laplace's equation in the exterior of the unit sphere ($r>1$), and the boundary condition $v(1, \theta, \varphi)=\Psi(\theta, \varphi)$, where $\Psi(\theta, \varphi)$ is a given smooth function.
Write down the representation of v for the case when $\Psi \equiv 1$.
[20 marks]
Hint: Use Kelvin's inversion for harmonic functions.
7. This question involves solutions of the heat equation.
(a) Verify that the function

$$
\begin{equation*}
G(x, t)=\frac{1}{2 \sqrt{\pi t}} e^{-\frac{x^{2}}{4 t}}, \tag{24}
\end{equation*}
$$

satisfies the heat equation

$$
\begin{equation*}
\frac{\partial G(x, t)}{\partial t}=\frac{\partial^{2} G(x, t)}{\partial x^{2}} \text { for } x \in(-\infty, \infty), t>0 \tag{25}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
G(x, 0)=\delta(x), \quad x \in(-\infty, \infty) \tag{26}
\end{equation*}
$$

where $\delta(x)$ is the Dirac delta function.
(b) Using the notion of the error function

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\alpha^{2}} d \alpha
$$

determine the solution of the following Cauchy problem for the heat equation

$$
\begin{gather*}
\frac{\partial u}{\partial t}(x, t)-\frac{\partial^{2} u}{\partial x^{2}}(x, t)=0, \quad x \in(-\infty, \infty), t>0 \tag{27}\\
u(x, 0)=\left\{\begin{array}{c}
-2, \text { when } x<1 \\
3, \\
\text { when } x \geq 1
\end{array}\right. \tag{28}
\end{gather*}
$$

[10 marks]

