PAPER CODE NO. MATH421

THE UNIVERSITY of LIVERPOOL

JANUARY 2008 EXAMINATIONS

MMath: Year 4

LINEAR DIFFERENTIAL OPERATORS IN MATHEMATICAL PHYSICS

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Full marks will be awarded for complete answers to FIVE questions. Only the best 5 answers will be taken into account.

Paper Code MATH421 Page 1 of 6

CONTINUED/

THE UNIVERSITY of LIVERPOOL

1. Let $D = {\mathbf{x} : |\mathbf{x}| < 1}$ be a unit disk with the centre at the origin, and let the energy functional \mathcal{E} in D be defined by

$$\mathcal{E}(u;D) = \int_{D} |\nabla u(\mathbf{x})|^2 d\mathbf{x}.$$
 (1)

The class \mathcal{A} of admissible functions is introduced as follows

$$\mathcal{A} = \{ \text{smooth } u \text{ on } D : \mathcal{E}(u; D) < +\infty, u = \cos(2\theta) \text{ when } |\mathbf{x}| = 1 \},$$
(2)

where θ is the polar angle.

Prove that

$$\mathcal{E}(x_1^2 - x_2^2; D) \le \mathcal{E}(u; D)$$
 for any $u \in \mathcal{A}$. (3)

[20 marks]

Hint: Verify that $x_1^2 - x_2^2$ is harmonic in D and $x_1^2 - x_2^2 \in \mathcal{A}$.

2. Let $w(\mathbf{x}, t)$ satisfy the wave equation

$$\frac{\partial^2 w(x,t)}{\partial t^2} - \frac{\partial^2 w(x,t)}{\partial x^2} = 0 \quad \text{for} \quad x \in (-1,1), \ t > 0, \tag{4}$$

together with the initial and boundary conditions

$$w(x,0) = \cos(\pi x), \ \frac{\partial w}{\partial t}(x,0) = 0 \ \text{ for } x \in (-1,1),$$
(5)

$$w(-1,t) = \frac{\partial w}{\partial t}(1,t) = 0 \text{ for all } t > 0.$$
(6)

Given the energy functional E(w, t) defined by

$$E(w,t) = \int_{-1}^{1} \left\{ \left(\frac{\partial w}{\partial t}(x,t)\right)^2 + \left(\frac{\partial w}{\partial x}(x,t)\right)^2 \right\} dx,\tag{7}$$

evaluate E(w, 5).

[20 marks]

Hint: Verify that the solution w(x,t) of the problem (4)–(6) satisfies the identity $E(w,t_1) = E(w,t_2)$ for any $t_1, t_2 \ge 0$.

Paper Code MATH421 Page 2 of 6 CONTINUED/

- **3.** This question uses the notion of distributions.
 - (a) Let

$$f(x) = \begin{cases} 1, & x > 3\\ (x-2), & 2 < x \le 3\\ 0, & x \le 2 \end{cases}$$
(8)

Interpret f''(x) in the sense of distributions and verify that

$$(f''(x),\varphi(x)) = \varphi(2) - \varphi(3), \tag{9}$$

for any test function $\varphi(x) \in \mathcal{D}(\mathbf{R})$.

[7 marks]

(b) Let $f(\mathbf{x}) = \log |\mathbf{x}|$, where $\mathbf{x} = (x_1, x_2) \in \mathbf{R}^2$. Evaluate

$$\Delta f(\mathbf{x}) = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} \tag{10}$$

in the sense of distributions and prove that

$$\Delta(\log |\mathbf{x}|) = 2\pi\delta(\mathbf{x}),\tag{11}$$

where $\delta(\mathbf{x})$ is the Dirac delta function.

[13 marks]

- 4. This question requires analysis of solutions of the wave equation.
 - (a) The fundamental solution G(x,t) of the wave equation satisfies the following Cauchy problem

$$\frac{\partial^2 G(x,t)}{\partial x^2} - \frac{\partial^2 G(x,t)}{\partial t^2} = 0, \ x \in (-\infty, +\infty), t > 0, \tag{12}$$

$$G(x,0) = 0, \ \frac{\partial G}{\partial t}(x,0) = \delta(x), \ x \in (-\infty, +\infty).$$
(13)

Verify that G(x,t) can be represented in the form

$$G(x,t) = \frac{1}{2}(H(x+t) - H(x-t)).$$
(14)

[10 marks]

Paper Code MATH421 Page 3 of 6 CONTINUED/

(b) Find the solution u(x,t) of the Cauchy problem for an infinite vibrating string

$$\frac{\partial^2 u(x,t)}{\partial x^2} - \frac{\partial^2 u(x,t)}{\partial t^2} = 0, \ x \in (-\infty, +\infty), t > 0,$$
(15)

with the initial conditions

$$u(x,0) = 0, \ \frac{\partial u}{\partial t}(x,0) = e^{-|x|}, \ x \in (-\infty,\infty).$$
(16)

[10 marks]

Hint: Use the D'Alembert formula.

- 5. Boundary value problems for Laplace's operator are included in this question.
 - (a) Derive the representation of Green's function $G(\mathbf{x}, \mathbf{y})$, where $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$, for the operator $-\Delta$ in the half-plane

$$\mathbf{R}_{+}^{2} = \{ (x_{1}, x_{2}) : x_{1} \in (-\infty, \infty), \ x_{2} > 0 \}.$$
(17)

Green's function is defined as the solution of the following boundary value problem

$$\frac{\partial^2 G}{\partial x_1^2}(\mathbf{x}, \mathbf{y}) + \frac{\partial^2 G}{\partial x_2^2}(\mathbf{x}, \mathbf{y}) + \delta(\mathbf{x} - \mathbf{y}) = 0, \quad \mathbf{x}, \mathbf{y} \in \mathbf{R}_+^2, \qquad (18)$$

with the Dirichlet boundary condition

$$G(\mathbf{x}, \mathbf{y}) = 0 \quad \text{when} \quad x_1 \in (-\infty, \infty), x_2 = 0, \mathbf{y} \in \mathbf{R}^2_+.$$
(19)

Here $\delta(\mathbf{x})$ is the Dirac delta function.

[10 marks]

(b) Find a solution of the following Dirichlet boundary value problem in the half-plane

$$\frac{\partial^2 u}{\partial x_1^2}(x_1, x_2) + \frac{\partial^2 u}{\partial x_2^2}(x_1, x_2) = 0, \quad (x_1, x_2) \in \mathbf{R}^2_+, \tag{20}$$

$$u(x_1, 0) = \delta(x_1 - 1) - \delta(x_1 + 1), \tag{21}$$

$$\lim_{x_1^2 + x_2^2 \to \infty} u(x_1, x_2) = 0.$$
(22)

[10 marks]

Paper Code MATH421

Page 4 of 6

CONTINUED/

6. Let (r, θ, φ) be spherical coordinates. A function $u(r, \theta, \varphi)$ harmonic in the interior of the unit sphere satisfies the integral Poisson's formula

$$u(r,\theta,\varphi) = \frac{1-r^2}{4\pi} \int_0^\pi d\theta' \int_0^{2\pi} d\varphi' \frac{u(1,\theta',\varphi')\sin\theta'}{(1+r^2-2r\cos\gamma)^{3/2}},$$
 (23)

where

$$\cos\gamma = \cos\theta\cos\theta' + \sin\theta\sin\theta'\cos(\varphi' - \varphi), \quad 0 \le r < 1$$

Derive the integral representation for a function $v(r, \theta, \varphi)$, which satisfies Laplace's equation in the exterior of the unit sphere (r > 1), and the boundary condition $v(1, \theta, \varphi) = \Psi(\theta, \varphi)$, where $\Psi(\theta, \varphi)$ is a given smooth function.

Write down the representation of v for the case when $\Psi \equiv 1$. [20 marks]

Hint: Use Kelvin's inversion for harmonic functions.

- 7. This question involves solutions of the heat equation.
 - (a) Verify that the function

$$G(x,t) = \frac{1}{2\sqrt{\pi t}}e^{-\frac{x^2}{4t}},$$
(24)

satisfies the heat equation

$$\frac{\partial G(x,t)}{\partial t} = \frac{\partial^2 G(x,t)}{\partial x^2} \quad \text{for } x \in (-\infty,\infty), \ t > 0, \qquad (25)$$

and the initial condition

$$G(x,0) = \delta(x), \quad x \in (-\infty,\infty), \tag{26}$$

where $\delta(x)$ is the Dirac delta function.

[10 marks]

Paper Code MATH421 Page 5 of 6 CONTINUED/

(b) Using the notion of the error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-\alpha^2} d\alpha,$$

determine the solution of the following Cauchy problem for the heat equation

$$\frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad x \in (-\infty,\infty), \ t > 0, \qquad (27)$$

$$u(x,0) = \begin{cases} -2, \text{ when } x < 1, \\ 3, \text{ when } x \ge 1. \end{cases}$$
(28)

[10 marks]

END.