THE UNIVERSITY of LIVERPOOL

JANUARY 2007 EXAMINATIONS

MMath: Year 4

LINEAR DIFFERENTIAL OPERATORS IN MATHEMATICAL PHYSICS

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Full marks will be awarded for complete answers to FIVE questions. Only the best 5 answers will be taken into account.

THE UNIVERSITY of LIVERPOOL

1. Let $u\left(x_{1}, x_{2}\right)$ satisfy the Poisson equation in the first quadrant $\Omega=$ $\left\{\left(x_{1}, x_{2}\right): x_{1}>0, x_{2}>0\right\}$ of the plane $O x_{1} x_{2}$:

$$
\begin{equation*}
\Delta u\left(x_{1}, x_{2}\right)+\delta\left(x_{1}-1\right) \delta\left(x_{2}-3\right)=0, \quad\left(x_{1}, x_{2}\right) \in \Omega \tag{1}
\end{equation*}
$$

(a) Find the solution of (1), which satisfies the Dirichlet boundary conditions on $\partial \Omega$

$$
\begin{equation*}
u\left(x_{1}, 0\right)=0 \text { when } x_{1} \geq 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
u\left(0, x_{2}\right)=0 \text { when } x_{2} \geq 0 . \tag{3}
\end{equation*}
$$

[10 marks]
(b) Find the solution of (1), which satisfies the Neumann boundary conditions on $\partial \Omega$

$$
\begin{equation*}
\frac{\partial u}{\partial x_{2}}\left(x_{1}, 0\right)=0 \text { when } x_{1} \geq 0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial x_{1}}\left(0, x_{2}\right)=0 \text { when } x_{2} \geq 0 . \tag{5}
\end{equation*}
$$

[10 marks]
2. (a) Let $U(\mathbf{x}) \in \mathcal{D}^{\prime}\left(\mathbf{R}^{2}\right)$ be a distribution, which satisfies the following equation

$$
\begin{equation*}
\Delta U(\mathbf{x})+\delta(\mathbf{x})=0, \quad \mathbf{x} \in \mathbf{R}^{2}, \tag{6}
\end{equation*}
$$

where $\delta(\mathbf{x})$ is the Dirac delta function, and Δ is Laplace's operator. Assume that derivatives $\partial U / \partial x_{i}, i=1,2$, vanish as $x_{1}^{2}+x_{2}^{2} \rightarrow \infty$. Verify that $U(\mathbf{x})$ can be represented in the form

$$
\begin{equation*}
U(\mathbf{x})=\frac{1}{2 \pi} \log |\mathbf{x}|^{-1}+B \tag{7}
\end{equation*}
$$

where B is constant.
(b) Let (r, θ) be polar coordinates, and let $u(r, \theta)$ be a solution of the Dirichlet problem in the interior of the unit disk

$$
\begin{equation*}
\Delta u(r, \theta)=0, \quad r<1, \tag{8}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
u(1, \theta)=\phi(\theta), \quad 0<\theta \leq 2 \pi, \tag{9}
\end{equation*}
$$

where $\phi(\theta)$ is a smooth function. Verify that the function $u(r, \theta)$ can be represented in the form

$$
\begin{equation*}
u(r, \theta)=\frac{1-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{\phi\left(\theta^{\prime}\right) d \theta^{\prime}}{1+r^{2}-2 r \cos \left(\theta-\theta^{\prime}\right)} \tag{10}
\end{equation*}
$$

[10 marks]
3. Let $B_{a}=\left\{\mathbf{x} \in \mathbf{R}^{3}:|\mathbf{x}|<a\right\}$ be a ball of radius a in \mathbf{R}^{3}, and let $S_{a}=\partial B_{a}$ be its boundary (the sphere of radius a with the centre at the origin).
(a) Verify that Green's function $G(\mathbf{x}, \mathbf{y})$ in B_{a} for the operator $-\Delta$ has the form

$$
\begin{equation*}
G(\mathbf{x}, \mathbf{y})=\frac{1}{4 \pi|\mathbf{x}-\mathbf{y}|}-\frac{q}{4 \pi\left|\mathbf{x}^{*}-\mathbf{y}\right|} \tag{11}
\end{equation*}
$$

where $q=a /|\mathbf{x}|$ and $\mathbf{x}^{*}=q^{2} \mathbf{x}$.
[15 marks]
(b) Derive that the limit value of $G(\mathbf{x}, \mathbf{y})$, as $\mathbf{x} \rightarrow \mathbf{0}$, is given by

$$
\begin{equation*}
G(\mathbf{0}, \mathbf{y})=\frac{1}{4 \pi|\mathbf{y}|}-\frac{1}{4 \pi a} . \tag{12}
\end{equation*}
$$

[5 marks]
4. The fundamental solution for the heat equation is defined as

$$
\begin{equation*}
G(x, t)=\frac{1}{2 \sqrt{\pi t}} \exp \left(-\frac{x^{2}}{4 t}\right) \tag{13}
\end{equation*}
$$

Paper Code MATH421 Page 3 of 6

Find the temperature $T(x, t)$ of a semi-infinite conducting rod, assuming that T satisfies the initial boundary value problem:

$$
\begin{gather*}
\frac{\partial T}{\partial t}-\frac{\partial^{2} T}{\partial x^{2}}=0, \quad x>0, t>0, \tag{14}\\
T(x, 0)=\left\{\begin{array}{cc}
1, & \text { when } 0<x<2, \\
-2, & \text { when } x \geq 2 .
\end{array}\right. \tag{15}\\
\frac{\partial}{\partial x} T(0, t)=0, \quad t>0 . \tag{16}
\end{gather*}
$$

[20 marks]
Hint: The error function is defined by

$$
\begin{equation*}
\operatorname{erf}(y)=\frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{-\alpha^{2}} d \alpha \tag{17}
\end{equation*}
$$

Please also note that

$$
\begin{equation*}
\lim _{y \rightarrow+\infty} \operatorname{erf}(y)=1 \tag{18}
\end{equation*}
$$

5. Let $D_{R}=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}<R^{2}\right\}$ be a disk of radius R with the centre at the origin, and $\Xi(1,10)=D_{10} \backslash \overline{D_{1}}$ be a ring of the interior radius 1 and the exterior radius 10 .
(a) Find a function $u\left(x_{1}, x_{2}\right)$, which satisfies the boundary value problem

$$
\begin{gather*}
\Delta u\left(x_{1}, x_{2}\right)=0, \quad\left(x_{1}, x_{2}\right) \in \Xi(1,10), \tag{19}\\
u\left(x_{1}, x_{2}\right)=1, \quad x_{1}^{2}+x_{2}^{2}=100 \tag{20}\\
\frac{\partial u}{\partial n}\left(x_{1}, x_{2}\right)=0, \quad x_{1}^{2}+x_{2}^{2}=1 \tag{21}
\end{gather*}
$$

where $\partial u / \partial n$ is the normal derivative of u on the unit circle.
[4 marks]
(b) Find a solution of the boundary value problem

$$
\begin{gather*}
\Delta u\left(x_{1}, x_{2}\right)=0, \quad\left(x_{1}, x_{2}\right) \in \Xi(1,10), \tag{22}\\
u\left(x_{1}, x_{2}\right)=1, \quad x_{1}^{2}+x_{2}^{2}=100 \tag{23}\\
u\left(x_{1}, x_{2}\right)=2, \quad x_{1}^{2}+x_{2}^{2}=1 \tag{24}
\end{gather*}
$$

[10 marks]
Paper Code MATH421 Page 4 of 6
CONTINUED/
(c) For both cases (a) and (b), evaluate the energy integral

$$
\begin{equation*}
\mathcal{E}(u ; \Xi(1,10))=\int_{\Xi(1,10)}\left|\nabla u\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2} \tag{25}
\end{equation*}
$$

[6 marks]
6. Consider the initial boundary value problem for the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}(x, t)-9 \frac{\partial^{2} u}{\partial t^{2}}(x, t)=0, \quad x>0, t>0 \tag{26}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
u(0, t)=0, t>0, \tag{27}
\end{equation*}
$$

and the initial conditions

$$
\begin{gather*}
\frac{\partial u}{\partial t}(x, 0)=x \exp \left(-x^{2}\right), x>0 \tag{28}\\
u(x, 0)=0, x>0 \tag{29}
\end{gather*}
$$

(a) Determine the solution $u(x, t)$ of the initial boundary value problem (26)-(29).
[12 marks]
(b) Evaluate $f(t)=(\partial u / \partial x)(0, t)$. Prove that $f^{\prime}(t)<0$ for all $t>3$. [8 marks]
7. Within the elastic rod, $x \in(0, \pi)$, determine the displacement function $u(x, t)$, which satisfies the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}(x, t)-\frac{1}{9} \frac{\partial^{2} u}{\partial t^{2}}(x, t)=0, \quad t>0,0<x<\pi, \tag{30}
\end{equation*}
$$

the boundary conditions

$$
\begin{equation*}
u(0, t)=0, \quad u(\pi, t)=0, \quad \text { as } t>0, \tag{31}
\end{equation*}
$$

and the initial conditions

$$
\begin{equation*}
u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=x(\pi-x), 0<x<\pi \tag{32}
\end{equation*}
$$

[20 marks]

